МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ Кафедра механики многофазных систем

> РЕКОМЕНДОВАНО К ЗАЩИТЕ В ГЭК И ПРОВЕРЕНО НА ОБЪЕМ ЗАИМСТВОВАНИЯ

> > И.о. заведующего кафедрой

к.ф.-м.н.

П.Ю. Михайлов

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

ИССЛЕДОВАНИЕ ФОТОИНДУЦИРОВАННОЙ ТЕРМОКАПИЛЛЯРНОЙ КОНВЕКЦИИ В ДВУХСЛОЙНЫХ ЖИДКИХ СИСТЕМАХ

03.04.02 Физика
Магистерская программа «Техническая физика в нефтегазовых технологиях»

Выполнил работу Студент 2 курса очной формы обучения

(Подпись)

Клюев Денис Сергеевич

Научный руководитель к.ф.-м.н., доцент

Up (Todnuch)

Иванова Наталья Анатольевна

Рецензент Заведующий кафедрой математического моделирования д.ф.-м.н., профессор Татосов Алексей Викторович

г. Тюмень, 2017

СОДЕРЖАНИЕ

AHHC		3
ВВЕД	ЕНИЕ	4
1. TE	РМОКАПИЛЛЯРНАЯ КОНВЕКЦИЯ	5
1.1.	Краткая история	5
1.2.	Механизм фотоиндуцированной ТК конвекции	6
1.3.	Метод ТК отклика	9
2. MI	ЕТОДИКА ЭКСПЕРИМЕНТА	. 11
2.1.	Рабочие жидкости	. 11
2.2.	Методика эксперимента	. 13
2.3.	Измерение температуры слоя	. 14
3. PE	ЗУЛЬТАТЫ ИССЛЕДОВАНИЯ	. 15
3.1.	Профиль деформации системы	. 15
3.2.	Режимы работы ДЖ систем	. 16
3.3.	Температура	. 18
3.4.	Зависимость колебаний от различных параметров	. 19
3.5.	Причина затухания колебаний	. 21
ЗАКЛІ	ЮЧЕНИЕ	. 22
СПИС	ОК ИСТОЧНИКОВ	. 23

АННОТАЦИЯ

В работе проводилось исследование поведения двухслойных жидких систем под воздействием индуцирующего лазерного излучения. Отличие объекта исследования в данной диссертации от других заключается в совокупности условий, соблюдаемых в эксперименте: открытая граница верхнего слоя, бесконтактный метод нагрева — лазерное излучение, отсутствие поверхностно-активных веществ в системе.

В главе 1 приведена краткая история развития явления термокапиллярной конвекций, а также описан метод термокапиллярного отклика.

В главе 2 описана экспериментальная установка, параметры выбранных веществ и методика эксперимента.

В главе 3 приведены результаты исследований, такие как:

- 1. Обнаружено явление динамической неустойчивости в нескольких системах и описаны условия его существования;
- 2. Построены графики эволюции диаметра термокапиллярного отклика системы в зависимости от ее диаметра и толщины верхнего слоя, определены основные условия существования неустойчивости;
- 3. Установлена причина затухания колебаний в системе.

Число страниц в представленной работе – 26, рисунков – 14, таблиц – 2.

ВВЕДЕНИЕ

Актуальность

Управление процессами тепломассопереноса, химическими реакциями, а также получение информации об исследуемой среде посредством передачи энергии с помощью оптического излучения, например, лазера, является важным в таких применениях как лазерная резка металла [2,21,22], фотохимия [23], физических измерение геометрических И параметров жидких пленок [1,6,7,8,9,10,26,28,29], неразрушающий контроль инородных включений под лакокрасочными покрытиями [4] и так далее. В большинстве указанных приложений ключевую роль играют конвективные течения, вызванные неравномерным нагревом среды.

Изучение этих течений в первую очередь имеет большое фундаментальное значение для развития теории конвекции в областях с границами раздела, в частности – многослойных жидких системах.

Цель и задачи исследования

Работа посвящена экспериментальному исследованию термокапиллярной конвекций в двухслойных жидких (ДЖ) системах, индуцированной лазерным пучком.

Были поставлены следующие задачи:

- 1. Разработка и сборка экспериментальной установки (ЭУ);
- 2. Подбор жидкостей для исследования;
- 3. Получение четкой интерференционной картины с поверхности жидкости, сформированной лазерным излучением (калибровка ЭУ);
- 4. Работа с ДЖ системами (вариация физических параметров, запись опытных данных);

ГЛАВА 1

ТЕРМОКАПИЛЛЯРНАЯ КОНВЕКЦИЯ

1.1. Краткая история

Отсутствие механического равновесия приводит к возникновению в жидкости внутренних течений, стремящихся перемешать жидкость так, чтобы в ней установилась постоянная температура. Такое движение, возникающее в поле тяжести, называют свободной конвекцией [17].

В основе другого вида конвекции – термокапиллярной (ТК) – лежит разница сил поверхностного натяжения, которая может быть вызвана локальным нагревом жидкости тем или иным способом: посредством контакта с нагревательным элементом [18] или с помощью направленного излучения [14,19].

Впервые термин «конвекция», в переводе от латинского «convectio» означающий "перенос", был введен английским ученым Уи́льямом Пра́утом в 1834 году [13]. Однако само явление возникновения конвекций в жидкостях и газах было открыто ранее, в конце XVIII века, Бенджамином Томпсоном, графом Румфордом [16]. В середине XIX века британский инженер Джеймс Томсон обнаружил явление капиллярной конвекции [42], в будущем названной эффектом Марангони — Гиббса. Позднее, итальянский физик Карло Марангони исследовал данное явление для своей работы [35], а полный теоретический анализ был уже проведен Джозайей Гиббсом. В 1888 году Д. Томсон обнаружил явление конвекции в горизонтальном слое жидкости. В дальнейшем, с 1900 года, начинаются систематические исследования Анри Бенара, затем, в 1916 году, появляется первая теоретическая работа Рэлея по исследованию возникновения конвекции в горизонтальном слое жидкости для двух свободных границ.

В 50-е годы XX века, появляется работа А.И. Федосова [24], в которой он предполагает возможность инициирования ТК конвекции с помощью света, а в середине – конце 70 годов Б.А. Безуглый впервые наблюдал явление ТК конвекции [3], индуцированной с помощью лазерного излучения, позднее дав ему объяснение [5].

1.2. Механизм фотоиндуцированной ТК конвекции

Локальное повышение температуры жидкости может приводить как к понижению поверхностного натяжения (нормальный ТК эффект), так и к его повышению (аномальный) [30].

Первая эмпирическая зависимость поверхностного натяжения γ от температуры T была выведена в 1886 году венгерским физиком Лорандом Этвёшом [33]. Эта зависимость также называется правилом Этвёша (Этвеша) и имеет следующий вид:

$$\gamma = k_e \left(\frac{1}{\nu_L}\right)^{\frac{2}{3}} (T - T_C),$$
 (1.1)

где k_e — константа Этвеша, одинаковая для всех жидкостей и имеющая значение 2.1×10^{-7} Дж/К · моль $^{-2/3}$, ν_L — молярный объем, T_C — температура (критическая), при которой $\gamma \to 0$.

Позднее, Катаяма в 1915 и Гуггенхайм в 1945 [34] изменили уравнение Этвеша, чтобы получить:

$$\gamma = \gamma^* \left(1 - \frac{T}{T_C} \right)^n, \tag{1.2}$$

где, γ^* — константа, определяемая для конкретной жидкости, n — эмпирический коэффициент, значение которого равно 11/9 для органических жидкостей [27]. Выражение (1.2) дает очень хорошие результаты для органических жидкостей. Если флуктуация температуры не очень важна, и если принять во внимание, что степень n очень близка к единице, то хорошим приближением формулы Гуггенхайма-Катаямы является линейное приближение

$$\gamma = \gamma^* (1 + \alpha T). \tag{1.3}$$

Часто проще и практичнее использовать измеренные исходные величины (γ_0, T_0) и рассматривать линейный закон изменения поверхностного натяжения с изменением температуры

$$\gamma = \gamma_0 (1 + \beta (T - T_0)), \tag{1.4}$$

Для сравнения (1.3) и (1.4) необходимо

$$\beta = -\frac{1}{T_C - T_0'},\tag{1.5}$$

Соотношения (1.3) и (1.4) показаны на рисунке 1.1.

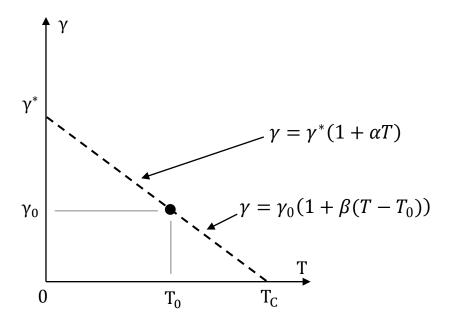


Рисунок 1.1 – Представление отношений (1.3) и (1.4) [27]

Значение γ_0 связано с γ^* отношением

$$\gamma_0 = \gamma^* \frac{T_C - T_0}{T_C}.\tag{1.6}$$

Коэффициент α является всегда отрицательным, если поверхностное натяжение уменьшается с температурой. Это свойство лежит в основе явления,

которое называется конвекцией Марангони или ТК конвекцией. Если поверхность локально нагрета любым тепловым источником, то поверхностное натяжение уменьшается в нагретой области, следуя уравнениям (1.3) или (1.4) — появляется градиент поверхностного натяжения между холодной и более нагретой поверхностями [27]. На рисунке 1.2 (а) показано, что поверхностное натяжение можно рассматривать как касательные силы, разность которых на поверхности создает поток жидкости, начинающийся из более теплой области (меньшее значение поверхностного натяжения γ^l) и направленный в более холодную (большее значение поверхностного натяжения γ^h).

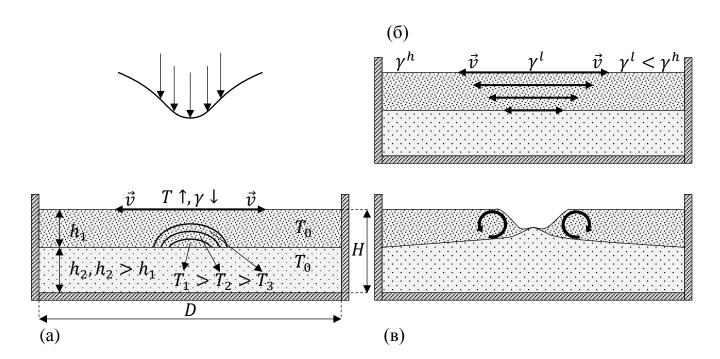


Рисунок 1.2 — Формирование профиля ТК углубления. $h_{1,2}$ — высоты верхнего и нижнего слоев соответственно, T — температура, \vec{v} — скорость жидкости

Это поверхностное течение, благодаря вязкости, приводит в движение нижележащие слои жидкости, рисунок 1.2 (б).

Если тепловое воздействие носит временный характер, то движение жидкости имеет тенденцию к прекращению, вследствие выравнивания температуры. Если разность температур на границе раздела поддерживается, то движение жидкости будет постоянным [27].

В случае точечного теплового воздействия, в нашем случае лазерным излучением, на пленку жидкости за счет вязкого увлечения поверхностью жидкости более низких слоев появляется ТК углубление. Вследствие пониженного давления в зоне нагрева возникают обратные течения нижних слоев жидкости. Таким образом, течения замыкаются и формируется тороидальный вихрь, рисунок 1.2 (в).

Форма и размеры искривленной поверхности, а также процесс конвекции зависят от множества параметров, таких как: мощность индуцирующего пучка P, его диаметр a, толщина слоя $h_{1,2}$, коэффициент поглощения $\alpha_{1,2}$, теплоемкость $c_{p_{1,2}}$ и теплопроводность $k_{1,2}$, вязкость $\mu_{1,2}$, термический коэффициент объемного расширения $\beta_{1,2}$ и поверхностного натяжения $\gamma_{1,2}$.

1.3. Метод ТК отклика

Метод основан на использовании отраженного от исследуемого объекта зондирующего лазерного излучения как носителя информации. Применение данного метода обусловлено его высокой чувствительностью к изменениям геометрической формы отражающей поверхности, а также отсутствием непосредственного контакта измерительного устройства с исследуемым объектом или средой. При этом мощность зондирующего лазера должна быть ослаблена настолько, чтобы не вносить тепловые возмущения в среду, но быть достаточной для формирования четкой картины ТК отклика на экране.

На рисунке 1.3 показана принципиальная схема формирования картины ТК отклика.

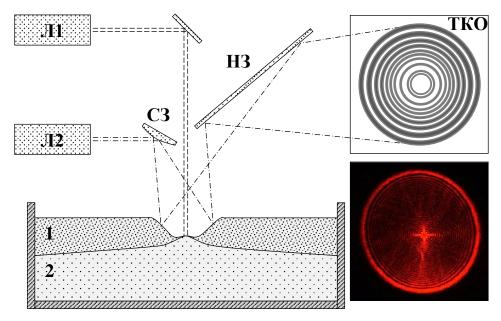


Рисунок 1.3 – Формирование картины ТК отклика: Л1 – индуцирующий лазер, Л2 – зондирующий лазер, С3 – сферическое зеркало, Н3 – направляющее зеркало, ТКО – ТК отклик: схема (сверху), фотография (снизу).

Луч Л1 падает на поверхность слоя 1, проходит его и попадает на поверхность поглощающего слоя 2. Данный лазер необходим для инициализации конвекции в системе жидкостей. Лазерный пучок, выходящий из Л2, расширяется от сферического зеркала и падает на поверхность 1, проходит ее и попадает на поверхность слоя 2. Расширение пучка необходимо для охвата всей зоны ТК деформации. Отразившаяся от поверхности часть излучения, интерферируя, направляется с помощью зеркала на белый экран.

Таким образом, на экране мы получаем интерференционную картину, называемую ТК откликом.

Суть данного метода заключается в измерении эволюции диаметра ТК отклика картины с течением времени.

ГЛАВА 2

МЕТОДИКА ЭКСПЕРИМЕНТА

2.1. Рабочие жидкости

Для проведения экспериментов были подобраны несмешивающиеся жидкости, одна из которых была окрашена для поглощения лазерного излучения. Исходя из необходимости поглощения жидкостью лазерного излучения с длиной волны 632.8 нм в качестве красителя был выбран бриллиантовый зеленый. В таблице 1 приведены названия и параметры использованных жидкостей.

В качестве нижнего слоя (2) выбирали жидкости с более высокой плотностью. Для исключения влияния термогравитационной конвекции на термокапиллярную деформацию толщину слоя 2 выбирали меньше определенной критической толщины h_c , формула (2.1) [26],

$$h_2 < h_c = \sqrt{\frac{\gamma_T'}{\rho g \beta'}},\tag{2.1}$$

где γ_T' — температурный коэффициент поверхностного натяжения [мH/(м·K)], ρ — плотность жидкости [г/см³], g — ускорение свободного падения [м/с²], β — термический коэффициент объемного расширения [1/К]. Для нашего случая было подсчитано, что $h_c \cong 3.4$ мм для бензилового спирта, $h_c \cong 3$ мм для глицерина и $h_c \cong 3.5$ мм для этиленгликоля, поэтому для соблюдения условия (2.1) h_2 выбрали равной 2 мм.

Верхний слой (1) оставляли прозрачным, а диапазон толщин выбрали от 0.5 мм до 1 мм, так как по условию эксперимента $h_1 < h_2$. Меньшие толщины были исключены вследствие полного разрыва пленки под внешним излучением без самозатягивания после его отключения. Верхняя граница была установлена по причине невозможности формирования ТК разрыва при больших толщинах.

Таблица 1

Параметры жидкостей

Название	Плотность ρ , г/см ³	Температура кипения <i>T</i> _к , К	Динамическая вязкость µ, Па·с	Поверхностное натяжение γ_0 , мН/м	Температурный коэффициент пов. натяжения γ_T' , мН/(м·К)	Теплопроводность k, Bт/(м·К)	Удельная теплоемкость Дж/(г·К)	Термический коэффициент объемного расширения eta , 1/K
ПМС-5	0.913 [37]	-	5 [37]	19.7	-	-	-	-
ПМС-10	0.93 [38]	-	10 [38]	20.1	-	-	-	-
ПМС-20	0.950 [40]	503 [40]	20 [40]	20.6 [40]	-	-	-	-
ПМС-100	0.96 [39]	-	100 [39]	20.9	-	-	-	-
Бенз. спирт	1.045	478 [15]	5.8 [20]	39	0.092	0.16 [12]	2.139 [20]	0.00075
Глицерин	1.26 [36]	560 [36]	1400 [36]	64	0.059	0.3 [36]	2.43 [36]	0.0005 [36]
Толуол	0.87 [11]	383 [11]	0.586 [11]	28.4	0.118	0.135 [11]	1.67 [11]	-
Этиленгликоль	1.11 [36]	471 [36]	20 [36]	47.7	0.089	0.26 [36]	2.4 [36]	0.00065 [36]

2.2. Методика эксперимента

Перед началом эксперимента в одноразовую чашку Петри диаметром 60 мм из полистирола аккуратно наливали окрашенный слой жидкости 2. Затем на поверхность слоя 2 наносили тонкий слой 1 прозрачной жидкости и давали системе время на релаксацию.

Далее на чашку с ДЖ системой направляли лазерный пучок мощностью 18±2 мВт. ТК отклик, спроецированный на экран, снимали с помощью видеокамеры, после чего измеряли диаметр интерференционной картины на каждом кадре. После обработки видеозаписи строили графики зависимости диаметра отклика от времени. Использованную систему утилизировали, а затем брали новую чашку Петри и повторяли эксперимент. Для определения влияния диаметра системы на ее поведение при облучении использовали калиброванные ограничивающие кольца, которые вставляли в чашку Петри и герметизировали на стыке. На рисунке 2.1 показана схема экспериментальной установки.

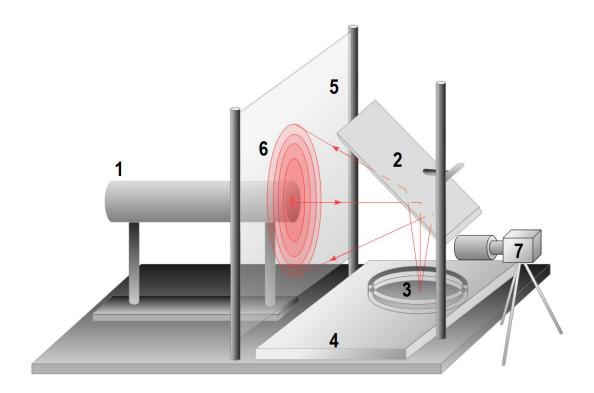


Рисунок 2.1 — Схема экспериментальной установки: 1 — индуцирующий, он же зондирующий лазер; 2 — направляющее зеркало; 3 — чашка Петри с исследуемой системой; 4 — антивибрационный стол; 5 — белый экран; 6 — интерференционная картина; 7 — видеокамера

Из рисунка видно, что в установке не предусмотрен отдельный зондирующий лазер. Это связано с тем, что для исследования поведения жидкости использовали частично отраженный луч индуцирующего лазера.

2.3. Измерение температуры слоя

Для измерения температуры нижнего слоя системы при облучении лазером использовали термопару, рисунок 2.2. Было выбрано два положения спая термопары для регистрации температуры — 1 и 1.5 мм от уровня дна системы. Измерений в зоне границы раздела не проводили во избежание влияния на конвективные потоки внутри слоя.

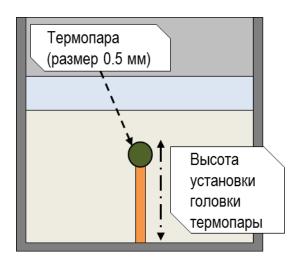


Рисунок 2.2 – Схема метода измерения температуры.

Во время облучения системы лазером все изменения температуры фиксировали и составляли графики.

ГЛАВА 3

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1. Профиль деформации системы

В результате проведения опытов по формированию углубления в верхнем (1) слое и его последующим разрывом, были построены зависимости времени формирования ТК разрыва от толщины, рисунок 3.1. На рисунке 3.2 показан профиль двухслойной системы в момент ТК разрыва слоя 1. Также здесь можно увидеть подъем слоя 2, который, как было позднее подсчитано, не связан с тепловым расширением (увеличение объема составляет менее 1%). Возможной причиной данного явления может быть баланс массы в системе.

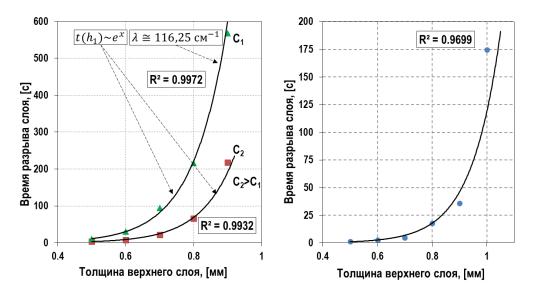


Рисунок 3.1 — Зависимость времени формирования ТК разрыва от толщины слоя 1: системы ПМС — 20 | бензиловый спирт (слева); C_1 , C_2 — концентрации красителя в нижнем слое; λ — коэффициент поглощения излучения; ПМС — 20 | глицерин (справа).

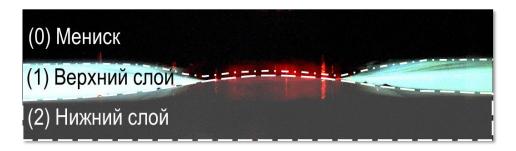


Рисунок 3.2 – Профиль ТК разрыва: пунктиром указаны границы слоев 1 и 2.

На рисунке 3.1 показано, что зависимость времени ТК разрыва от толщины слоя 1 хорошо описывается экспоненциальной функцией (добротность аппроксимации $R^2 > 0.9$).

Также, исходя из графиков (рисунок 3.1 (слева)) можно сказать, что с повышением концентрации красителя в слое 2 происходит уменьшение времени формирования ТК разрыва.

3.2. Режимы работы ДЖ систем

В ходе исследования ДЖ систем было обнаружено, что параллельно с устойчивым разрывом верхнего слоя (рисунок 3.3) существует отдельный режим работы систем – колебательный (неустойчивый), рисунок 3.4.

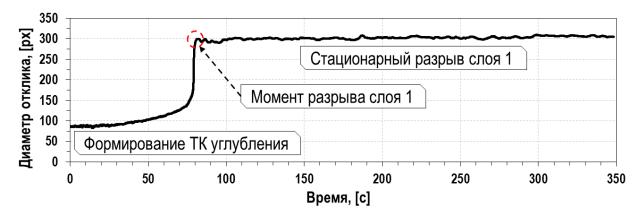


Рисунок 3.3 – Устойчивый режим работы системы

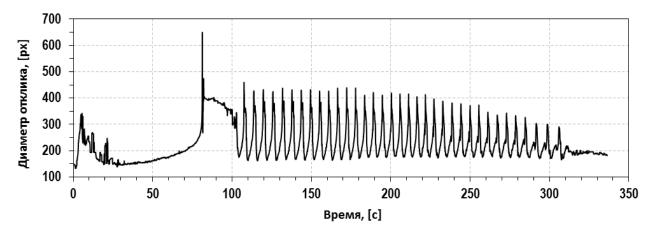


Рисунок 3.4 – Неустойчивый режим работы системы

Отличительная его особенность заключается в том, что некоторые системы начинают после ТК разрыва переходить в состояние динамической неустойчивости: происходит затягивание разрыва слоя 1 с последующей попыткой

системы снова сформировать ТК углубление (разрыв слоя 1 уже не формируется), глубина и размеры которого с периодом уменьшаются.

На рисунке 3.4 показано, что первая фаза эволюции системы протекает в соответствии с графиком на рисунке 3.3, что говорит об одном и том же процессе, отвечающем за формирование ТК углубления с дальнейшим разрывом слоя 1. Далее, как предполагается, в работу включается соперничество между силами межфазного ($\gamma_2 - \gamma_1 = \gamma_{1,2}$) и поверхностного натяжений слоя 1 (γ_1), так как в системах с осцилляционными процессами наблюдается примерное равенство $\gamma_{1,2}$ и γ_1 . В работе [31] исследовали неустойчивость в двухслойной системе с закрытыми границами, вызванную локальным нагревом пучком лазера. Авторами было установлено, что характер ТК неустойчивости, а также направление вращения ТК вихрей зависит от соотношения вязкостей жидкостей обоих слоев и соотношения толщин обоих слоев.

В нашем случае анализ отношений вязкостей жидкостей верхнего и нижнего слоев показал, что вязкость не является параметром, который определяет режим работы системы, таблица 2.

Таблица 2 Режимы работы систем

		Устойчивый (тип I)	Отношение вязкостей	$\gamma_{1,2}-\gamma_1$
Название	системы	ПМС – 5, 10, 20, 100 Глицерин	$\mu_1/\mu_2 \ll 1$	>> 0
		ПМС – 20 Этиленгликоль	$\mu_1/\mu_2 \cong 1$	> 0
		ПМС – 5, 10 Этиленгликоль	$\mu_1/\mu_2 > 1$	> 0
		ПМС – 100 Этиленгликоль	$\mu_1/\mu_2 < 1$	≪ 0
		Неустойчивый (тип II)		
Названия	1bI	Толуол Этиленгликоль	$\mu_1/\mu_2 \ll 1$	≅ 0
	системы	ПМС – 5 Бензиловый спирт	$\mu_1/\mu_2 \cong 1$	≅ 0
		ПМС – 10, 20, 100 Бензиловый спирт	$\mu_1/\mu_2 > 1$	≅ 0

Исходя из вышесказанного, можно предположить, что равенство значений $\gamma_{1,2}$ и γ_1 , вероятно, является ключевым фактором, отвечающим за неустойчивость в системе.

Стоит упомянуть, что процесс осцилляций (автоколебаний) наблюдался в работе [25], однако его существенное отличие от нашего случая состоит в природе явления и характеристиках системы. В [25] причиной неустойчивости являлось попеременное совместное действие ТК и концентрационно-капиллярных сил в слое воды с растворенным в ней этанолом, после полного испарения которого осцилляции прекращались и наблюдался стационарный ТК отклик.

3.3. Температура

Были произведены измерения зависимости температуры слоя 2 от времени нагрева, рисунок 3.5.

Полученные зависимости показывают, что разница по высоте в 0.5 мм, дает смещение по оси температуры примерно на 1 °C.

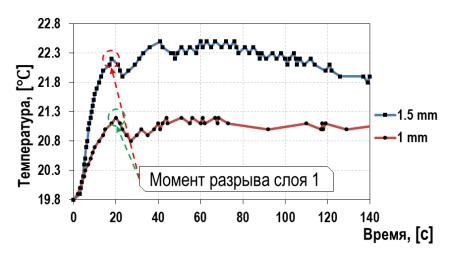


Рисунок. 3.5 – Температурные зависимости нижнего слоя

На рисунке 3.5 можно заметить, что в момент разрыва слоя 1 происходит небольшое снижение температуры, продолжительностью около 10 секунд. Возможно, такое продолжительное снижение температуры связано с тем, что в момент разрыва слоя происходит испарение с поверхности слоя 2, либо это происходит по другой причине.

3.4. Зависимость колебаний от различных параметров

Результаты исследования поведения систем типа II показали, что на полную продолжительность колебаний и их период влияют такие факторы, как: отношение h_1/h_2 (рисунок 3.6) и диаметр системы $D_{\text{сист}}$, рисунок 3.7.

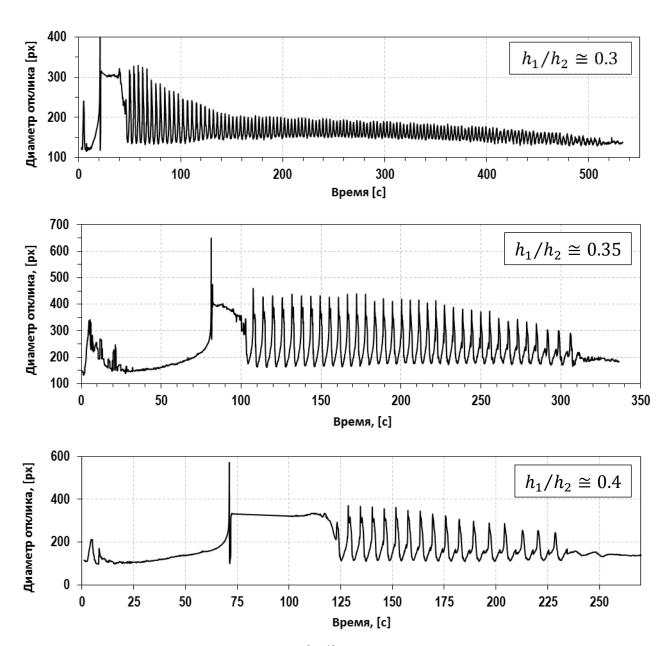


Рисунок 3.6 – Влияние h_1/h_2 на эволюцию ТК отклика.

Как видно из графиков на рисунке 3.6 при увеличении толщины слоя 1 $(h_2 = 2 \text{ мм})$ полное время колебаний уменьшалось, а период колебаний увеличивался.

Заметим, что о влиянии h_1/h_2 на амплитуду колебаний, в нашем случае это диаметр ТК отклика, на данном этапе исследований говорить пока сложно.

графиках Поскольку значение диаметра отклика на определяется расстоянием между направляющим зеркалом и системой (в нашем случае эта величина постоянная), поэтому диаметр несет только качественную информацию процессе. Нормирование зависимостей D(t)колебательном целесообразно, так как высота пиков в колебательном режиме зависит от измерительного оборудования и программного обеспечения. Для определения (h_1/h_2) колебаний необходимо зависимости амплитуды OT проведение дополнительных исследований. Например, прямое измерение диаметра разрыва слоя с течением времени для разных h_1/h_2 .

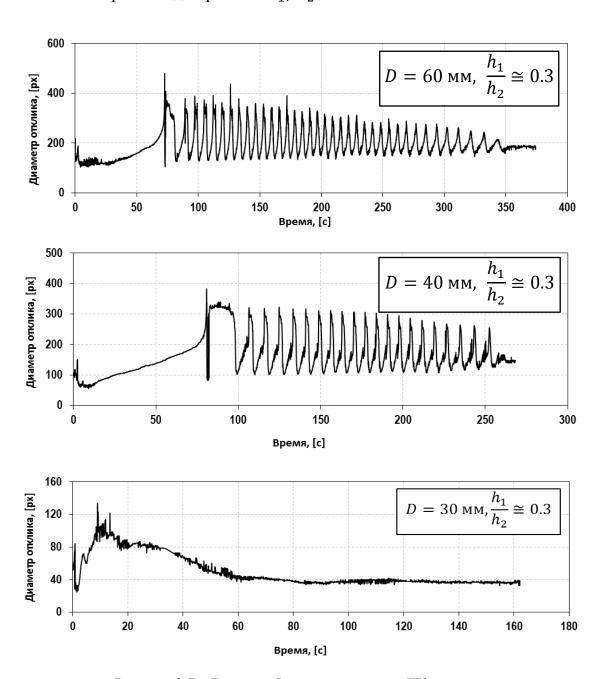


Рисунок 3.7 — Влияние $D_{\text{сист}}$ на эволюцию ТК отклика.

На рисунке 3.7 можно увидеть, что уменьшение диаметра системы приводит к сокращению полного времени колебаний вплоть до полного прекращения их возникновения и формирования разрыва слоя. Определение минимальных размеров системы ($D_{\text{сист}}$, h_1) необходимо для выяснения пределов работоспособности системы типа II.

3.5. Причина затухания колебаний

С течением времени облучения колебания в системе затухали до формирования небольшого стационарного ТК углубления в слое 1. Однако теоретически, система должна работать пока к ней подводится энергия.

Было замечено, что в центре слоя 1 после окончания осцилляций появлялась пленка молочного оттенка (рисунок 3.8), которая при детальном исследовании с помощью микроскопа оказалась скоплением пузырьков размерами от нескольких микрон до 20-40 мкм, рисунок 3.9.

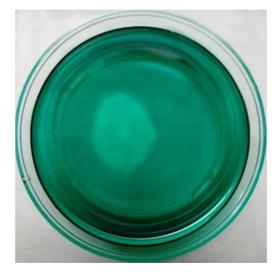


Рисунок 3.8 – Фотография пленки в системе ПМС | Бензиловый спирт.

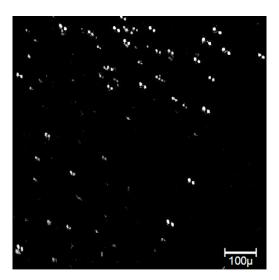


Рисунок 3.9 – Фотография скопления пузырьков.

Предполагается, что возможной причиной затухания колебаний является, образование пузырьков, рассеивающих излучение лазера, тем самым, не давая системе получать энергию.

ЗАКЛЮЧЕНИЕ

Исследование термокапиллярной конвекции в двухслойных жидких системах под воздействием лазерного излучения показало существование двух режимов работы ДЖ системы: устойчивый (тип I) и колебательный (тип II).

Для систем обоих типов установлено, что увеличение концентрации красителя ведет сокращению времени формирования ТК разрыва.

Для систем типа II установлено:

- 1. При уменьшении $D_{\text{сист}}$ происходит уменьшение времени осцилляций вплоть до полного их прекращения;
- 2. При уменьшении h_1/h_2 полное время осцилляций увеличивается, а период колебаний уменьшается;
- 3. Обнаружено формирование скопления пузырьков в зоне воздействия пучка лазера, что является причиной затухания колебаний (вследствие рассеяния света).

Конечно, полноценное изучение обнаруженного явления требует более глубокого исследования, которое включает в себя более широкий спектр измерений физико-химических свойств системы, контроль постоянства мощности лазерного пучка, построение математической модели эксперимента и т.п. Однако на основе проделанной работы можно определить условия существования систем I и II-го типов, а также основные характеристики слоев жидкостей, влияющих на динамику систем.

СПИСОК ИСТОЧНИКОВ

- 1. *Агровский Б. С., Богатуров А.Н., Зуев В.И., Ольхов В.М.* Измерение распределений температуры в конвективном потоке, наведенным мощным тепловым излучением [Журнал] // Инж.-физ. Ж.. 1988 г.. № 6 : Т. 54. стр. 980–982.
- Антонова Г. Ф., Гладуш Г.Г., Красюков А.Г., Косырев Ф.К., Родионов Н.Б. О механизме дистанционной резки металлов излучением СО2–лазера [Журнал]
 // ТВТ. 2000 г.. № 3 : Т. 38. стр. 501–506.
- 3. *Безуглый Б. А., Галашин Е.А., Дудкин Г.Я.* О фотоконденсации йода [Журнал] // Письма в ЖЭТФ. 1975 г.. № 22 : Т. 2. стр. 76–79.
- 4. *Безуглый Б. А., Зыков А. Ю., Семенов С. В.* Фототермокапиллярный метод обнаружения инородных включений в твердом теле под лакокрасочным покрытием [Журнал] // Письма в журнал технической физики. 2008 г.. № 17 : Т. 34. стр. 38–44.
- 5. *Безуглый Б. А., Низовцев В. В.* Капля, рожденная Солнцем [Журнал] // Химия и жизнь. 1977 г.. № 7. стр. 33–36.
- 6. *Безуглый Б. А., Тарасов О. А., Федорец А. А.* Применение ТК эффекта для измерения толщины тонкого слоя жидкости [Статья] // Вестник Тюменского госуниверситета. Тюмень : [б.н.], 2000 г.. № 3. стр. 64–67.
- 7. Безуглый Б. А., Тарасов О. А., Федорец А. А., Шепеленок С. В. Способ измерения толщины тонкого слоя прозрачной жидкости [Патент] : \mathbb{N} 2149353. $\mathbb{P}\Phi$, 2000 г..
- Безуглый Б. А., Федорец А. А. Бесконтактный способ измерения вязкости. Бюл. № 9. [Патент] : № 2201587. - РФ, 2003 г..
- 9. *Безуглый Б. А., Федорец А. А.* Лазерный метод измерения толщины тонкого слоя жидкости на твердой поверхности с помощью ТК отклика [Журнал] // Письма в ЖТФ. 2001 г.. № 9. стр. 20–25.
- 10. *Безуглый Б. А., Федорец А. А.* Способ измерения толщины тонкого слоя прозрачной жидкости Бюл. № 10 [Патент] : № 2165071. РФ, 2001 г..

- 11. *Варгафтик Н. Б.* Справочник по теплофизическим свойствам газов и жидкостей [Книга]. Москва : Наука, 1972. издание второе, дополненное и переработанное : стр. 720.
- 12. *Варгафтик Н.Б. Филиппов Л.П., Тарзиманов А.А., Тоцкий Е.Е.*, [Книга]. Москва : Энергоатомиздат, 1990. стр. 352.
- 13. Гарифуллин Ф. А. Возникновение конвекции в горизотальных слоях жидкости [Журнал] // Соросовский образовательный журнал. 2000 г.. № 8 : Т. 6. стр. 108–114.
- Гладуш Г. Г., Дробязко С. В., Лиханский В. В., Лобойко А. И., Сенаторов Ю.М.
 Термокапиллярная конвекция при лазерном нагреве жидкости [Журнал] //
 Квантовая электроника. 1998 г.. № 5 : Т. 25. стр. 439–442.
- 15. *Кнунянц И. Л.* Химическая энциклопедия [Книга]. Москва : Советская энциклопедия, 1988. Т. 1 : 5 : стр. 625.
- Кудрявцев П. С. Курс истории физики [Книга]. [б.м.] : Просвещение, 1982. 2 изд., испр. и доп. : стр. 448
- 17. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Гидродинамика [Книга].
 Москва: ФИЗМАТЛИТ, 2001. 5-е изд.: Т. VI: X: стр. 736.
- 18. Мизёв А. И. Экспериментальное исследование термокапиллярной конвекции, индуцированной локальной температурной неоднородностью вблизи поверхности жидкости. 1. Твердотельный источник тепла [Журнал] // Прикладная механика и техническая физика. Пермь : [б.н.], 2004 г.. № 4 : Т. 45. стр. 36–49.
- 19. Мизёв А. И. Экспериментальное исследование термокапиллярной конвекции, индуцированной локальной температурной неоднородностью вблизи поверхности жидкости. 2. Источник тепла, индуцированный излучением [Журнал] // Прикладная механика и техническая физика. Пермь : [б.н.], 2004 г.. № 5 : Т. 45. стр. 102–108.
- 20. *Никольский Б.П.* Справочник химика [Книга]. Москва, Ленинград : Химия, 1966. Второе и дополненное : Т. 1 : стр. 1072.

- 21. Рыкалкин Н. Н., Красулин Ю. Л. Оценка энергетических параметров сварки металлов световым потоком лазера [Журнал] // Доклады Академии Наук СССР. 1965 г.. № 1 : Т. 163. стр. 87–90.
- 22. *Софонов А. Н.* Технологические процессы лазерной обработки материалов [Журнал] // Технологическое оборудование и материалы. 1998 г.. № 5.
- 23. *Турро Н*. Молекулярная фотохимия [Книга] / ред. доктор физ.-мат. Васильев Р. Ф. / перев. Белякова В.А. и канд. хим. наук Бучаченко А.Л.. Москва : Мир, 1967. стр. 328.
- 24. *Федосов А. И.* Термокапиллярное движение [Журнал] // Журнал физической химии. 1956 г.. № 2 : Т. 30. стр. 366–373.
- 25. *Чемоданов С. И.* Эволюция фототермокапиллярного эффекта и разработка методов лазерной диагностики жидкостей на его основе // Автореферат. 2006 г.. стр. 18-19.
- 26. Эйдельман Е. Д. Влияние толщины слоя жидкости на соотношение размеров ячейки конвекции [Журнал] // Журнал технической физики. Санкт-Петербург: [б.н.], 1998 г... № 11: Т. 68.
- 27. *Berthier Jean*. Microdrops and Digital Microfluidics. Processing. Development and Applications [Book]. Norwich, NY, USA: William Andrew, 2008. p. 434.
- 28. *Bezuglyi B. A., Chemodanov S. I., Tarasov O. A.* New approach to diagnostics of organic impurities in water [Journal] // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004. Vol. 239. pp. 11–17.
- 29. *Bezuglyi B. A., Fedorets A. A., Tarasov O. A.* Laser diagnostics of liquids and its layers [Conference] // First Conference of the International Marangoni Association. Giessen, Germany: [s.n.], 2001. pp. 84–85.
- 30. Braverman L. M., Eckert K., Nepomnyashchy A. A., Simanovskii I. B., Thess A. Convection in two-layer systems with an anomalous thermocapillary effect [Journal] // Physical Review E. September 2000. № 3 : Vol. 62. pp. 3619–3631.
- 31. *Chraïbi H. Delville Jean-Pierre*. Thermocapillary flows and interface deformations produced by localized laser heating in confined environment [Journal] // AIP Physics of fluids. [s.l.]: American Institute of Physics, 2012.

- 32. *Chen S., Grigoropoulos C. P.* Noncontact nanoscaled-time-resolution temperature measurement in excimer laser heating od Ni-P disk substrates [Journal] // Appl. Phys. Lett.. 1997. N. 22 : Vol. 71. pp. 3191-3193.
- 33. *Eötvös R.* Wied [Journal] // Ann. Phys.. 1886. Vol. 27. pp. 445–459.
- 34. *Guggenheim E. A.* The principle of corresponding states [Journal] // Chem. Phys..- 1945. Vol. 13. pp. 253–261.
- 35. *Marangoni C*. Sull'espansione delle goccie di un liquido galleggiante sulla superficie di altro liquido. 1865.
- 36. *Martinez Isidoro*. Properties of liquids [Online] // Departamento de Motopropulsión y Termofluidodinámica. 1995-2017. April 28, 2017.- http://webserver.dmt.upm.es/~isidoro/dat1/eLIQ.pdf.
- 37. Silicone oil viscosity 5 cSt (25 °C) [Online] // Sigma Aldrich A Part of Merck. 28 April 2017.- http://www.sigmaaldrich.com/catalog/product/aldrich/317667? lang=en®ion=RU.
- 38. Silicone oil viscosity 10 cSt (25 °C) [Online] // Sigma Aldrich A Part of Merck. April 28, 2017. http://www.sigmaaldrich.com/catalog/product/aldrich/378321? lang=en®ion=RU.
- 39. Silicone oil viscosity 100 cSt (25 °C) [Online] // Sigma Aldrich A Part of Merck. April 28, 2017. http://www.sigmaaldrich.com/catalog/product/aldrich/378364?lang=en®ion=RU.
- 40. SiSiB® HF2020-EU FLUID [Online] // Power Chemical Corporation. April 28, 2017. http://www.powerchemical.net/library/Silicone_Oil.pdf.
- 41. Surface tension values of some common test liquids for surface energy analysis [Online]. April 28, 2017. http://www.surface-tension.de.
- 42. *Thomson J.* On certain curious motions observable on the surfaces of wine and other alcoholic liquours [Journal] // Philosophical Magazine. 1855. Vol. 10. p. 330.