

2

TABLE OF CONTENTS

ABSTRACT/ANNOTATION .. 3

Chapter 1: INTRODUCTION AND PROBLEMS .. 4

Chapter 2: HOW DATA SHOULD SYNC ... 6

2.1 System to integrate (Salesforce and Magento) .. 6

2.2 Objects that need to be synchronized .. 7

2.3 Fields to sync .. 7

Chapter 3: INPUTTING YOUR DATA INTO AN INTEGRATION SYSTEM 8

3.1 Core ESB Features .. 8

3.2 The Advantages of ESB .. 9

Chapter 4: DEVELOPING INTEGRATIONS IN MULESOFT ... 11

4.1 Anypoint Studio .. 11

4.1.1 Package Explorer .. 12

4.1.2 Canvas ... 12

4.1.3 Mule Palette .. 14

4.1.4 Mule Message ... 15

4.2 Designing a Mule Application .. 15

Chapter 5: MAP YOUR SYSTEMS, OBJECTS AND FIELDS .. 19

5.1 Mapping Magento Customer Fields to Salesforce Contact Fields .. 22

5.2 Mapping Magento Customer Fields to Salesforce Account Fields ... 23

5.3 Mapping Magento Orders Attributes with Salesforce Opportunity Fields 24

Chapter 6: TASKS FOR EXECUTION ... 27

1. HTTP-Magento-Salesforce-Customer .. 27

2. HTTP-Salesforce-Magento-Customer .. 33

3. HTTP-Magento-Salesforce-Order .. 37

4. POLL-Salesforce-Magento-Customer .. 41

5. POLL-Magento-Salesforce-Customer .. 47

6. HTTP-Salesforce-Magento-Order .. 52

7. POLL-Magento-Salesforce-Order .. 56

8. POLL-Salesforce-Magento-Order .. 61

CONCLUSION ... 66

REFERENCES .. 67

3

ABSTRACT/ANNOTATION

This thesis discusses the problems of integration of different systems that are

managed by events, using service buses of enterprises of different manufacturers as

an infrastructure layer.

Salesforce to Magento can be used to create data sharing relationship. Salesforce is

a natively supported feature of the Force.com platform, and easily enables two

trading partners to share relevant data records between orgs; it shows how to create

connections between two different environments, and how to use the connection to

share data.

Magento offers quick and easy integration with market-leading CRM, Salesforce,

allowing the rapid and seamless flow of data between the two systems:

 Pull customer lists from Salesforce directly into Magento

 Build stronger account profiles from additional data in CRM

 Automatically update database changes in Salesforce

 Create leads, orders in Salesforce with new registration data

 Real-time overview of event history in Salesforce

4

Chapter 1: INTRODUCTION AND PROBLEMS

Data transformation is one of the most common problems facing systems

integrators as source data is often in an inconsistent format or structure for systems

wanting to use that data. This requires integrators to implement code for the

mapping operations required to convert the data from one form to another e.g. from

one XML document format to another. The code to do this is often tedious to write,

consisting typically of pages of C++, Java, or XSLT code, and, as a result, tends to

be error prone.

 Data transformation problems are challenging to implement for large, complex

datasets. I describe an approach for specifying data mapping transformations

between XML schema using a combination of automated schema analysis agents

and selective user interaction. A graphical tool visualizes parts of the two schemas

to be mapped and a variety of agents analyze all or parts of the schema, voting on

the likelihood of matching subsets. The user can confirm or reject suggestions, or

even allow schema matches to be automatically determined, incrementally building

up a fully-mapped schema. An implementation of the mapping specification can

then be generated from the various inter-schema matches.

Some of the agents are listed below with a brief description of their input, their

heuristic technique, i.e. things they look for in schema or data XML structures, and

the “quality” of resultant mapping correspondence suggestions.

Exact Name Matcher- This agent compares element names in one schema to those

in another, suggesting mappings when two have the same tag name. This works

well when tag names are the same and unique across each document e.g. LastName

in both schema.

Partial Name Matcher- This looks for a substring that matches in each name, e.g.

Price to Unit Price.

Element Type Matcher- This compares data type names of elements e.g.

CustomerID: Integer and ID: String.

Record Type Matcher- This compares record types (sets of elements) rather than

leaf element types (single types). For example; Name: LastName & FirstName and

5

Name: name(s) may correspond if the complex (multi-valued record types) Name

(Contact) and Name (Account) are the same or can be converted.

Synonym Matcher- This can be applied to element tag names or element type

names. The Synonym Matcher compares names, or parts of names, to see if they

are synonyms of each other e.g. DOB and DateOfBirth are likely to correspond in

some way.

Exact Data Value Matcher- This looks at XML data records rather than schema

and identifies a correspondence between a single source and target element if their

values are the same.

Partial Data Value Matcher- This looks at XML data values from one or multiple

elements and computes a likelihood match, similar to the Name Closeness Matcher

for element and type names.

Figure below shows parts of two XML schema representing information about our

two (2) systems:

Figure 1: Example schema mapping between our 2 systems

6

Chapter 2: HOW DATA SHOULD SYNC

2.1 System to integrate (Salesforce and Magento)

Magento is a feature-rich eCommerce platform built on open-source technology

that provides online merchants with unprecedented flexibility and control over the

look, content and functionality of their eCommerce store. Magento’s intuitive

administration interface features powerful marketing, search engine optimization

and catalog-management tools to give merchants the power to create sites that are

tailored to their unique business needs. Magento offers companies the ultimate

eCommerce solution.

Salesforce integration into magento platform allows companies to monitor

customer’s behavior not only by products purchased but also increase repeat

purchases, brand loyalty and conversion rates, social media engagements in an

integrated database.

Magento Salesforce CRM Integration is a powerful tool that helps store-owners to

synchronize data automatically between Magento site and Salesforce CRM.

Features and Benefits of Salesforce and Magento

 Allows synchronizing and updating Customers from Magento store into

Salesforce CRM Leads, Contacts, Accounts;

 Allows synchronizing Orders from Magento store into Salesforce CRM

Orders;

 Allows synchronizing Promotions from Magento store into Salesforce CRM

Campaigns;

 Allows synchronizing and updating Products from Magento store into

Salesforce CRM Products;

 Allows synchronizing Product Categories from Magento store into

Salesforce CRM Price Book;

 Allows creating Custom Fields in and synchronizing Custom Invoices from

Magento store into Salesforce CRM Custom Invoices;

 Allows synchronizing Custom Invoice Items;

 Allows creating Custom Fields in, synchronizing and updating Custom

Customers from Magento store into Salesforce CRM Custom Customers;

7

 Allows creating Custom Fields in, synchronizing and updating automatically

Custom Products from Magento store into Salesforce CRM Custom

Products;

 Allows deleting customer and product's records in Magento once they are

auto deleted in Salesforce CRM Leads, Contacts, Accounts, Custom

Customer and Custom Product;

 Allows admins to select conditions to transfer old data from Magento store

into Salesforce CRM;

 Reports about synchronizing old data;

 Supports mapping smartly and manually between Magento attributes and

Salesforce fields or custom fields;

 Allows admins define the mapping fields in backend with ease;

 Admin can view the log to see what is synchronized between two apps.

2.2 Objects that need to be synchronized

What is synced between Magento and Salesforce?

Lead, Account, Opportunity, Contact, etc...

All the Entities of the objects listed above that needs to be synchronize will fully

discussed under the chapter ‘mapping’.

2.3 Fields to sync (where the data lives)

We sync most standard fields in SFDC and any custom field that the sync user has

permission to see.

In contrast, Magento users only have four fields available for synchronization:

 First name

 Last name

 Email address

 ID

8

Chapter 3: INPUTTING YOUR DATA INTO AN INTEGRATION SYSTEM

(Choosing the right system for you)

Integration of information systems of various classes remains an urgent topic for

many companies and government organizations. To increase efficiency and

transparency of activities, it is important to organize end-to-end business processes

and ensure the interaction of various information systems.

The solution was the approach based on the use of services. Information systems

are divided into functionally complete, independent components (services), each of

which is designed to perform a certain. To execute a business process, you must

ensure that the services are called in the right sequence. The IT architecture, based

on the allocation and interaction of services, was called SOA (service-oriented

architecture). One of the most common ways to implement services in SOA is to

use web services.

The combination of service concepts, business process management and

integration servers led to the creation of a new class of integration solutions -

Enterprise Service Bus. Currently, ESB is the most advanced tool for performing

complex and large-scale integration projects.

When integrating, especially when it comes to complex and large-scale projects,

the key issue can be called the choice of the optimal platform, which will ensure

reliability and speed in the joint operation of several systems.

ESB - an approach to building distributed corporate information systems.

Typically, it includes middleware, which provides the interconnection between

different applications for various communication protocols.

3.1 Core ESB Features

There are a number of different ESB products available on the market today.

 Some, such as WebSphere Message Broker or TIBCO BusinessWorks, are

traditional EAI products that have been re-factored to offer ESB-like functionality,

but still function in a broker-like manner.

Others, such as MuleSoft's Mule ESB, are designed from the ground up using open

messaging and integration standards to implement the ESB model.

9

Integration between database tables of various applications will be implemented on

the basis of the Mule service bus, which allows you to receive and transmit data in

a specific format, and the terminal modules are adapters to application databases.

Mule ESB is an easy and flexible platform easily adaptable to the existing

infrastructure, as well as reliable to ensure the smooth operation of the largest and

most demanding enterprise SOA implementers.

3.2 The Advantages of ESB

Here's a look at the advantages offered by an ESB approach to application

integration:

 Lightweight: because an ESB is made up of many interoperating services, rather

than a single hub that contains every possible service, ESBs can be as heavy or

light as an organization needs them to be, making them the most efficient

integration solution available.

 Easy to expand: If an organization knows that they will need to connect additional

applications or systems to their architecture in the future, an ESB allows them to

integrate their systems right away, instead of worrying about whether or not a new

system will not work with their existing infrastructure. When the new application

is ready, all they need to do to get it working with the rest of their infrastructure is

hook it up to the bus.

10

 Scalable and Distributable: Unlike broker architectures, ESB functionality can

easily be dispersed across a geographically distributed network as needed.

 Additionally, because individual components are used to offer each feature, it is

much simpler and cost-effective to ensure high availability and scalability for

critical parts of the architecture when using an ESB solution.

 SOA-Friendly: ESBs are built with Service Oriented Architecture in mind. This

means that an organization seeking to migrate towards an SOA can do so

incrementally, continuing to use their existing systems while plugging in re-usable

services as they implement them.

 Incremental Adoption: At first glance, the number of features offered by the best

ESBs can seem intimidating. However, it's best to think of the ESB as an

integration "platform", of which you only need to use the components that meet

your current integration needs. The large number of modular components offers

unrivaled flexibility that allows incremental adoption of an integration architecture

as the resources become available, while guaranteeing that unexpected needs in the

future will not prevent ROI.

11

Chapter 4: DEVELOPING INTEGRATIONS IN

MULESOFT

For us to integrate data between magento and salesforce, we will make use of

MULE ESB.

In this chapter we will quickly see in brief the tools available for developing the

integration application in MuleSoft

4.1 Anypoint Studio

Anypoint Studio is the graphical editor that is used to develop the Mule projects.

This is built on top of the Eclipse IDE and hence the entire editor would give a

very familiar feel if you have been acquainted with Eclipse or Eclipse based editor

before. The editor has a drag and drop canvas on which the flows are designed. All

the flows designed using the drag and drop canvas is internally stored as XML

files. Hence we can also use the XML editor of the Anypoint Studio to design the

projects.

12

Graphical representation of a mule studio

Let’s look into the various components that are available in the studio.

4.1.1 Package Explorer

As shown above, on the left hand side of the canvas in the Anypoint Studio is the

Package Explorer. It contains all the content of a mule application that we develop.

Whenever we create a new Mule project, a default flow is created.

4.1.2 Canvas

The Canvas is the area where we design the flow. It is a graphical editor where in

we can drag and drop the elements from the Mule Palette from the right side. The

palette contains the basic building blocks of a flow. It contains various predefined

components which can be used. With a closer look at the canvas we can see that

there are three tabs at the bottom, namely:

13

1. Message Flow: Drag and drop interface to build flows.

2. Global Elements: Contains the elements which can be reused. It is generally

a good practice to keep all the connection related attributes and

configurations of the entire project in a single global elements flow.

3. Configuration XML: In addition to the graphical editor, the studio also

provides an XML editor. All the building blocks that are placed on to the

canvas are represented by their equivalent XML structure in

the configuration.xml file.

As shown in the below two snippets, the XML is the exact equivalent of the flow

that is dragged and dropped. So, we can edit either in the canvas or the xml editor.

Canvas

14

Configuration.xml

4.1.3 Mule Palette

The studio comes with a set of predefined building blocks that can be dragged on

to the canvas to build the applications. These building blocks range from a

simple File Connector to Enterprise connectors such as SAP, PeopleSoft, etc. The

components on the Mule Palette are classified into the following types:

1. Connectors - used to interact with the third party APIs or Systems

2. Scopes - used to define the area or boundary until which the flow and the

messages in the flow are visible

3. Components - used to execute the business logic

4. Transformers - used to modify or massage the data

5. Filters - used to conditionally pass the data

6. Flow control - used to route or broadcast the same message to more than

one processor component.

7. Error handling - used to handle Exceptions

8. Security - used to provide secure access to information, applications and

services

15

Now that we have understood the various parts of the Anypoint Studio, let’s try

to understand a bit about how the data moves around in Mule.

4.1.4 Mule Message

Mule message is the data that passes through the application via one or more flows.

The message is composed of the following:

1. Header - contains the metadata about the message.

2. Payload - contains the actual data that would be acted upon. The entire mule

message is encapsulated in an object called as the Mule Message object.

This object contains the following:

 Mule message

o Header

 Inbound properties

 Outbound properties

o Payload

 Variables

 Attachments

 Exception payload

The Inbound properties are the immutable ones and are set by the message sources,

whereas the outbound properties are set in the flow and these might act as inbound

properties for the next connector.

The variables like in any other programming language are used to store some

useful data. The variables are further classified into the following types:

1. Flow variables - specific to a flow

2. Session variables - available to all the flows within the app

3. Record variables - used in case of records of a batch context

4.2 Designing a Mule Application

The development of a Mule application starts with a Flow. Flow is the logical

component which acts as a starting point of an application. The flow kicks in when

it receives an input or an incoming message. Flows can be configured to be

either Synchronous or Asynchronous.

16

As can be seen from the above figure, the Flow contains two parts. A

message Source and a Processing unit. The flows can also be configured to have

an error handling mechanism. There can be any number of flows defined in an

application, and we can separate them on a logical basis, e.g. consider a flow

which processes the data from a REST source, another one which processes data

from a SOAP endpoint, one from database and so on. There are unit names that can

be used as flow reference and invoke one flow from another. Flows without a

specific message source are termed as Private flows.

There are a couple of ways in which we can invoke or kick in the process:

1. Polling: We can define the Mule to poll an endpoint at regular intervals and

then receive the data and process accordingly.

2. HTTP Listener: The mule flow can be made to listen on to a specific port

and host. So whenever a request is received on the specific port, the mule

flow starts.

17

The HTTP Component requires a connector configuration that defines the

Hostname, the Proxy details, use of TLS etc. as shown below

18

Commonly used building blocks:

The following section defines some of the commonly used connectors for simple

integrations.

1. Salesforce Connector

 Authentication Methods:

 Basic Authentication

 OAuth 2.0 JWT Bearer

 OAuth 2.0 SAML Bearer

 OAuth v2.0

 Salesforce actions:

 Insert / Upsert/ Update / Delete / Query

 Getting Session ids

19

 Streaming API

 Calling apex services

 Getting batch job details

 Converting lead

 Creating metadata, Deploying metadata

2. Database

The database connector can be used to connect to the databases and perform

operations such as select, update, insert.

3. Set Payload

There can be instances when we would want to modify the payload as per the need,

or set the payload to a specific value. In such cases we can use the set payload to

define the payload to a new value. In general whenever we use any of the

transformers, the payload is usually modified. Also, when an outbound connector

is used, the response received from the connector becomes the new payload.

4. HTTP Request

The http request configuration can be used in case of REST API services. This

connector is used to invoke the outbound APIs. Whatever is defined as the payload

prior to this step becomes the body of the API call in case of POST methods. The

parameters such as Query parameters, URI parameters, and Headers can all be

configured.

Chapter 5: MAP YOUR SYSTEMS, OBJECTS AND

FIELDS

With CRM, you need to know Salesforce is the best CRM for Magento platform.

Salesforce is full-featured CRM software for all types of businesses. As all-in-one

software, Salesforce offers everything you need to find and keep customers, close

sales and grow your business.

In order to synchronize data fields from Magento to your Salesforce CRM account

correctly, you need to create the mapping for these fields first.

20

There are 4 objects that can be synchronized: Contact, Account, Order, and

Opportunity.

MAGENTO (Contact & Order)

Contact

The customerCustomerEntityToCreate content is as follows:

Name Type Description

Email String Customer email

Firstname String Customer first name

Lastname String Customer last name

Website_id Int Website ID

Store_id Int Store ID

Group_id Int Group ID

Prefix String Customer prefix (optional)

Suffix String Customer suffix (optional)

Dob String Customer date of birth(optional)

Tax vat String Customer tax/VAT number (optional)

Gender Int Customer gender: 1- Males, 2 –Female (optional)

Middlename String Customer middle name/initial (optional)

Order

Allows you to retrieve the list of orders.

The salesOrderEntity content is as follows:

Name Type Description

Increment_id String Increment ID

Parent_id String Parent ID

21

Store_id String Store ID

Created_at String Date of creation

Updated_at String Date of updating

Is_active String Defines whether the order is active

Customer_id String Customer ID

Tax_amount String Tax amount

Shipping_amount String Shipping amount

Discount_amount String Discount amount

Subtotal String Subtotal sum

Grand_total String Grand total sum

Total_paid String Total paid

Total_refunded String Total refunded

Shipping_description String Shipping description

Customer_email String Email address of the customer

Customer_firstname String Customer first name

Customer_lastname String Customer last name

SALESFORCE (Account & Opportunity)

Account

Field Name Type

ID Id

22

Account Number String

Owner ID Reference

Billing Street Text area

Billing City String

Billing State String

Billing Postal Code String

Billing Country String

Created by Id Reference

Created Date Date time

Phone Phone

Shipping Street Text

Shipping City String

Shipping State String

Shipping Postal code String

Shipping Country String

Website url

Opportunity

Field Name Type

Account ID Reference

Amount Currency

Close Date Date

IsClosed Boolean

CreatedByID Reference

CreatedDate Date time

Description Textarea

LastModifiedById Reference

LastModifiedDate Date time

Name String

TotalOpportunityQuantity Double

StageName Picklist

Type Picklist

5.1 Mapping Magento Customer Fields to Salesforce Contact Fields

Automatically create a contact in Salesforce each time there is a new customer in

Magento

The following fields from Magento Customers and default billing address are

migrated to Salesforce Contacts:

23

 Id

 First Name

 Last Name

 Email

 Mailing Postal Code

 Mailing Street

 Mailing City

 Mailing State

 Mailing Country

5.2 Mapping Magento Customer Fields to Salesforce Account Fields

Automatically create an account oldest contact in Salesforce each time there is a

new customer in Magento.

Magento Customer Account Fields Salesforce Account Fields

Name Name

Email Email_c

BillingStreet BillingStreet

BillingCity BillingCity

BillingState BillingState

BillingCountry BillingCountry

ZipPostalCode BillingPostalCode

ShippingStreet ShippingStreet

ShippingCity ShippingCity

24

5.3 Mapping Magento Orders Attributes with Salesforce Opportunity

Fields

Whenever a customer places an order, the information will be synced in

Salesforce's Orders and Opportunities.

Magento Order Fields Salesforce Opportunity Fields

Name Name

Status StageName

Amount Amount

TotalQty TotalOpportunityQuantity

Probability Probability

Web LeadScource

Close date CloseDate

Order Number OrderNumber_c

Integrating Magento with Salesforce consists of web service calls utilizing XML

request/response setup over an HTTPS connection. The technical details of this

connection such as request headers, error handling, HTTPS connection, etc. are all

abstracted from the user to make implementation quick and easy.

Here are the metadata that were used in making the integration a success.

I. <sfdc:create-metadata>

Create metadata: Adds one or more new metadata components to your organization

XML Sample

<sfdc:create-metadata config-

ref="mySalesforceConfig" type="Account">

 <sfdc:objects>

 <sfdc:object ref="#[payload]" />

 </sfdc:objects>

 </sfdc:create-metadata>

II. <sfdc:list-metadata>

Retrieves property information about metadata components in your organization

XML Sample

<sfdc:list-metadata config-ref="mySalesforceConfig" type="Account"/>

25

This call retrieves property information about metadata components in your

organization

III. <sfdc:upsert-metadata>

Creates or updates one or more metadata components in your organization

XML Sample

<sfdc:upsert-metadata config-ref="mySalesforceConfig" type="Account">

 <sfdc:objects>

 <sfdc:object ref="#[payload]" />

 </sfdc:objects>

 </sfdc:upsert-metadata>

IV. <sfdc:create>

Adds one or more new records to your organization's data.

Take the CloseDate of an Opportunity as an example, if you set that field to a

string of value "2011-12-13" it will be sent to Salesforce as a string and operation

will be rejected on the basis that CloseDate is not of the expected type.

The proper way to actually map it is to generate a Java Date object, you can do so

using Groovy expression evaluator as #[groovy:Date.parse("yyyy-MM-dd", "2011-

12-13")].

XML Sample

<sfdc:create config-ref="Salesforce3" type="Account">

 <sfdc:objects>

 <sfdc:object>

 <sfdc:inner-object key="BillingStreet">30 Maiden Lane</sfdc:inner-object>

 <sfdc:inner-object key="BillingCity">San Francisco</sfdc:inner-object>

 <sfdc:inner-object key="BillingCountry">US</sfdc:inner-object>

 <sfdc:inner-object key="BillingState">CA</sfdc:inner-object>

 <sfdc:inner-object key="Name">MuleSoft</sfdc:inner-object>

 <sfdc:inner-object key="BillingPostalCode">94108</sfdc:inner-object>

 </sfdc:object>

 </sfdc:objects>

</sfdc:create>

V. <sfdc:create-single>

Adds one new record to your organization's data.

26

XML Sample

<sfdc:create-single config-ref="mySalesforceConfig" type="Account">

 <sfdc:object>

 <Name>MuleSoft</Name>

 <BillingStreet>30 Maiden Lane</BillingStreet>

 <BillingCity>San Francisco</BillingCity>

 <BillingState>CA</BillingState>

 <BillingPostalCode>94108</BillingPostalCode>

 <BillingCountry>US</BillingCountry>

 </sfdc:object>

</sfdc:create-single>

VI. <sfdc:query>

Executes a query against the specified object and returns data that matches the

specified criteria.

This operation can potentially return a large amount of records that might exceed

memory capacity.

To prevent this from being a problem, the output of this operation is automatically

paginated into an iterable collection of objects. Regardless of the page-size, the

iterator will be pushing out registries one at a time and fetching next pages on

demand. If you wish to take advantage of the pagination, you must process the

output through elements that can handle collections, such as a ForEach scope or

DataMapper. In this way, Mule will execute the entire set of registries one at a

time, but processing only a batch at a time and thus keeping memory usage from

going over limits.

XML Sample

<sfdc:query config-ref="mySalesforceConfig" query="SELECT Id FROM Account"/>

27

Chapter 6: TASKS FOR EXECUTION

System consists of two cloud software: Magento and Salesforce CRM. You

should develop the integration application to synchronize data between these

systems.

Implement following scenario for the customer synchronization:

1. Write data to salesforce/ magento

i. HTTP-Magento-Salesforce-Order

ii. HTTP-Magento-Salesforce-Customer

iii. HTTP-Salesforce-Magento-Order

iv. HTTP-Salesforce-Magento-Customer

v. POLL-Magento-Salesforce-Order

vi. POLL-Magento-Salesforce-Customer

vii. POLL-Salesforce-Magento-Order

viii. POLL-Salesforce-Magento-Customer

SOLUTION

1. HTTP-Magento-Salesforce-Customer

The purpose of this flow is create customer in magento and simultaneously been

created in salesforce.

28

The first element, an HTTP Inbound Endpoint, listens on localhost port 8081 (the

default) for incoming GET requests. Hitting the listener triggers the flow. Requests

to the HTTP Inbound Endpoint must take the form:

http://localhost:8081?<query>

The <query> part of the request consists of the parameters accepted by the REST

API. When the HTTP Inbound Endpoint receives the HTTP request,

the <query> part of the URL becomes a set of inbound properties. The HTTP

29

listener passes the message to the next element in the flow, Magento. The Magento

uses a set of simple MEL expressions to extract the query parameters from the

message, and to construct the full URL for the remote API, including the query

parameters.

The Magento passes the JSON (results) it received from the API to a DataMapper

Transformer configured to synchronize data to the next flow (salesforce). The

transformer sends this object, which contains the JSON data as key=value pairs, to

the last element in the flow, a database connector. This connector uses an SQL query

with embedded Mule Expression Language expressions to extract specific values

from the JSON and insert them into Salesforce database.

How the Configuration was done

I. HTTP Inbound Endpoint

The HTTP service listens on a specific port on our mule server or our local

machine. When a request is hit on this address, the Mulesoft flow kicks in, and the

flow gets started. As shown above, the flow is started whenever the HTTP service

is hit with a GET request on the address specified in the HTTP connector

configuration. In this case, since the service is hosted on the localhost, if we host

the mule on a web server, then the server's ip can be used to reach the service.

Path: /sync

Method: GET

30

II. Magento Configurations

Magento is configured as shown above

Operation: Get Customer

Customer Id: #[message.inboundProperties.’http.query.param’.customerid]

Attribute name is configured to create object manually.

III. DATAMAPPER

Is the process of converting data from one format (e.g. a database file, XML

document, or Excel sheet) to another, because data often resides in different

locations and formats across the enterprise, data transformation is necessary to

ensure data from one application or database is intelligible to other applications

and databases, a critical feature for application integration.

31

The mapping looks like:

IV. Salesforce configuration

In this salesforce connector, it is configured to create single as an operation from

contact as the object type and the field mapping will read from payload meaning, it

will get it data from datamapper, the data that datamapper stored from magento

when it was queried, the results from datamapper will be added to the database of

salesforce.

32

Running This Example

To trigger the flow in this application, use a Web browser or an HTTP client such as

the curl command-line utility to hit the HTTP Inbound Endpoint on localhost port

8081.

I used POSTMAN call my endpoint. (localhost:8081/sync)

After that we logged into Salesforce and verify whether the contacts have been

created, all the 30 contacts that we have in Magento have been added to Salesforce

contacts making it larger.

Example Use Case Code

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:data-mapper="http://www.mulesoft.org/schema/mule/ee/data-mapper"
xmlns:metadata="http://www.mulesoft.org/schema/mule/metadata"
xmlns:magento="http://www.mulesoft.org/schema/mule/magento"
xmlns:dw="http://www.mulesoft.org/schema/mule/ee/dw"
xmlns:batch="http://www.mulesoft.org/schema/mule/batch"
xmlns:tracking="http://www.mulesoft.org/schema/mule/ee/tracking"
xmlns:json="http://www.mulesoft.org/schema/mule/json"
xmlns:http="http://www.mulesoft.org/schema/mule/http"
xmlns:sfdc="http://www.mulesoft.org/schema/mule/sfdc"
xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-current.xsd
http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/http
http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
http://www.mulesoft.org/schema/mule/sfdc
http://www.mulesoft.org/schema/mule/sfdc/current/mule-sfdc.xsd
http://www.mulesoft.org/schema/mule/json
http://www.mulesoft.org/schema/mule/json/current/mule-json.xsd
http://www.mulesoft.org/schema/mule/magento
http://www.mulesoft.org/schema/mule/magento/current/mule-magento.xsd
http://www.mulesoft.org/schema/mule/ee/tracking
http://www.mulesoft.org/schema/mule/ee/tracking/current/mule-tracking-ee.xsd
http://www.mulesoft.org/schema/mule/batch
http://www.mulesoft.org/schema/mule/batch/current/mule-batch.xsd
http://www.mulesoft.org/schema/mule/ee/dw
http://www.mulesoft.org/schema/mule/ee/dw/current/dw.xsd
http://www.mulesoft.org/schema/mule/ee/data-mapper
http://www.mulesoft.org/schema/mule/ee/data-mapper/current/mule-data-mapper.xsd">

33

 <sfdc:config name="Salesforce__Basic_Authentication"
username="herbdolie25@gmail.com" password="goldeneagle2"
securityToken="WJultmwDP0mBzW4mwwlZ8S13" doc:name="Salesforce: Basic
Authentication"/>
 <http:listener-config name="HTTP_Listener_Configuration" host="0.0.0.0"
port="8081" doc:name="HTTP Listener Configuration"/>
 <magento:config name="Magento" username="api" password="107475508th"
address="http://magento-tyumenacm.rhcloud.com/index.php/api/v2_soap"
doc:name="Magento"/>
 <data-mapper:config name="CustomerCustomerEntity_To_Contact"
transformationGraphPath="customercustomerentity_to_contact.grf"
doc:name="CustomerCustomerEntity_To_Contact"/>
 <flow name="BulkApiFlow1">
 <http:listener config-ref="HTTP_Listener_Configuration" path="/sync"
doc:name="HTTP" allowedMethods="GET"/>
 <magento:get-customer config-ref="Magento" doc:name="Magento"
customerId="#[message.inboundProperties.'http.query.params'.customerid]">
 <magento:attribute-names>
 <magento:attribute-name>firstname</magento:attribute-name>
 <magento:attribute-name>lastname</magento:attribute-name>
 <magento:attribute-name>email</magento:attribute-name>
 <magento:attribute-name>customerid</magento:attribute-name>
 </magento:attribute-names>
 </magento:get-customer>
 <data-mapper:transform config-ref="CustomerCustomerEntity_To_Contact"
doc:name="CustomerCustomerEntity To Contact"/>
 <sfdc:create-single config-ref="Salesforce__Basic_Authentication"
type="Contact" doc:name="Salesforce"/>
 <logger level="INFO" doc:name="Logger"/>
 </flow>

</mule>

2. HTTP-Salesforce-Magento-Customer

The purpose of this flow is to create customer from salesforce while creating

account in salesforce with the details provided.

I. Main Flow

A flow with an HTTP Listener Connector is created, set its Path to requests and

the Allowed Methods field to GET.

Create a Global Element for the Connector, set the Host to localhost, leave

the Port as the default 8081 and set the Base Path to synCustomer.

34

After the HTTP Connector, add a Salesforce Connector, DataMapper, Magento,

and a Logger.

II. Salesforce connector

Connects with Salesforce, and performs an operation to extract data.

Set the Operation to `Query` (see image below).

After you have defined your query, click OK. The Query Editor saves, then displays

your query in the Query Text field in the Properties Editor.

35

III. DATAMAPPER

As you can see, Anypoint DataMapper has automatically created a top-level

mapping called Foreach 'Contact' → 'object', and mapped the field Name since it

is identical in the input and output panes. You can now map additional elements,

such as Street 1 to street and Zipcode 1 to zipCode.

IV. Magento

Magento settings are simple, after a successful connection with the database, I set

the operation to ‘update customer’, customer id to be updated to ‘37’ and the

customer reference to ‘Payload’ meaning, it will be updating records in magento

with information from salesforce.

36

Console

Example Use Case Code

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:data-mapper="http://www.mulesoft.org/schema/mule/ee/data-mapper"
xmlns:tracking="http://www.mulesoft.org/schema/mule/ee/tracking"
xmlns:magento="http://www.mulesoft.org/schema/mule/magento"
xmlns:dw="http://www.mulesoft.org/schema/mule/ee/dw"
xmlns:metadata="http://www.mulesoft.org/schema/mule/metadata"
xmlns:json="http://www.mulesoft.org/schema/mule/json"
xmlns:http="http://www.mulesoft.org/schema/mule/http"
xmlns:sfdc="http://www.mulesoft.org/schema/mule/sfdc"
xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-current.xsd

37

http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/magento
http://www.mulesoft.org/schema/mule/magento/current/mule-magento.xsd
http://www.mulesoft.org/schema/mule/http
http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
http://www.mulesoft.org/schema/mule/json
http://www.mulesoft.org/schema/mule/json/current/mule-json.xsd
http://www.mulesoft.org/schema/mule/sfdc
http://www.mulesoft.org/schema/mule/sfdc/current/mule-sfdc.xsd
http://www.mulesoft.org/schema/mule/ee/dw
http://www.mulesoft.org/schema/mule/ee/dw/current/dw.xsd
http://www.mulesoft.org/schema/mule/ee/tracking
http://www.mulesoft.org/schema/mule/ee/tracking/current/mule-tracking-ee.xsd
http://www.mulesoft.org/schema/mule/ee/data-mapper
http://www.mulesoft.org/schema/mule/ee/data-mapper/current/mule-data-mapper.xsd">
 <http:listener-config name="HTTP_Listener_Configuration" host="0.0.0.0"
port="8081" doc:name="HTTP Listener Configuration"/>
 <magento:config name="Magento" username="api" password="107475508th"
address="http://magento-tyumenacm.rhcloud.com/index.php/api/v2_soap"
doc:name="Magento"/>
 <sfdc:config name="Salesforce__Basic_Authentication"
username="herbdolie25@gmail.com" password="goldeneagle2"
securityToken="WJultmwDP0mBzW4mwwlZ8S13" doc:name="Salesforce: Basic
Authentication"/>
 <data-mapper:config name="Contact_To_CustomerCustomerEntityToCreate"
transformationGraphPath="contact_to_customercustomerentitytocreate.grf"
doc:name="Contact_To_CustomerCustomerEntityToCreate"/>
 <flow name="HTTP-Magento-Salesforce-CustomerFlow">
 <http:listener config-ref="HTTP_Listener_Configuration" path="/Customer"
allowedMethods="GET" doc:name="HTTP"/>
 <sfdc:query-single config-ref="Salesforce__Basic_Authentication"
doc:name="Salesforce" query="dsql:SELECT Email,FirstName,LastName FROM Contact">
 </sfdc:query-single>
 <data-mapper:transform config-ref="Contact_To_CustomerCustomerEntityToCreate"
doc:name="Contact To CustomerCustomerEntityToCreate"/>
 <magento:update-customer config-ref="Magento" customerId="47"
doc:name="Magento">
 <magento:customer ref="#[payload]"/>
 </magento:update-customer>
 <logger message="#[payload]" level="INFO" doc:name="Logger"/>
 </flow>
</mule>

3. HTTP-Magento-Salesforce-Order

i. Main Flow

The next scenario we will go through is querying data from a Magento database

based on a HTTP GET request. The requirement of this scenario is to get a

38

particular order detail from the Magento database with order ID containing a

specified string. To implement this scenario, I have created the following flow

containing the steps listed below:

The application started by adding HTTP endpoint as the starting of the flow, then

follow by magento, DataMapper, Salesforce and Logger connector to the flow to

enable us read the data in formatted format.

HTTP Endpoint is configured as seen below:

Path: /order and allow GET method is used

ii. Magento

After a connector configuration was successful, moved on to set the operation of

the basic settings to ‘get order’ from the magento salesforce, where an order ID is

specified as shown below:

39

iii. DATAMAPPER

Configure the [DataMapper] so that each variable has its pairing. This output

argument sets the value of a variable on each iteration of the DataMapper,

overwriting it with a new value each time. Because you ordered your collection

so that the last element is the newest, the value that "sticks" at the end of the

DataMapper’s iteration is what Mule needs for the watermark.

iv. SALESFORCE

After creating salesforce connection. Now select your desired operation like

Query, Create, Update and Delete etc.

I selected the Create in operation to create new details of opportunities (orders)

from the salesforce.

40

v. Logger

Add a Logger at the end of your flow. The logger also allows you to verify that the

watermark works.

Example Use Case Code

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:magento="http://www.mulesoft.org/schema/mule/magento"
xmlns:json="http://www.mulesoft.org/schema/mule/json"
xmlns:http="http://www.mulesoft.org/schema/mule/http" xmlns:data-
mapper="http://www.mulesoft.org/schema/mule/ee/data-mapper"
xmlns:sfdc="http://www.mulesoft.org/schema/mule/sfdc"
xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.mulesoft.org/schema/mule/magento
http://www.mulesoft.org/schema/mule/magento/current/mule-magento.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-current.xsd
http://www.mulesoft.org/schema/mule/json
http://www.mulesoft.org/schema/mule/json/current/mule-json.xsd
http://www.mulesoft.org/schema/mule/http
http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
http://www.mulesoft.org/schema/mule/sfdc
http://www.mulesoft.org/schema/mule/sfdc/current/mule-sfdc.xsd
http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/ee/data-mapper
http://www.mulesoft.org/schema/mule/ee/data-mapper/current/mule-data-mapper.xsd">
 <http:listener-config name="HTTP_Listener_Configuration" host="0.0.0.0"
port="8081" doc:name="HTTP Listener Configuration"/>
 <sfdc:config name="Salesforce__Basic_Authentication"
username="herbdolie25@gmail.com" password="goldeneagle259"

41

securityToken="dpFpnnaArcjG6Kpwei9GFJCNH" doc:name="Salesforce: Basic
Authentication"/>
 <magento:config name="Magento" username="api" password="107475508th"
address="http://magento-tyumenacm.rhcloud.com/index.php/api/v2_soap"
doc:name="Magento"/>
 <data-mapper:config name="SalesOrderEntity_To_List_Opportunity_"
transformationGraphPath="salesorderentity_to_list_opportunity_.grf"
doc:name="SalesOrderEntity_To_List_Opportunity_"/>
 <flow name="salesforce-magento-orderFlow">
 <http:listener config-ref="HTTP_Listener_Configuration" path="/opportunity"
allowedMethods="GET" doc:name="HTTP"/>
 <sfdc:query config-ref="Salesforce__Basic_Authentication" query="dsql:SELECT
Name,OrderNumber__c,StageName FROM Opportunity" doc:name="Salesforce"/>
 <logger message="#[payload]" level="INFO" doc:name="Logger"/>
 </flow>
 <flow name="salesforce-magento-orderFlow1">
 <http:listener config-ref="HTTP_Listener_Configuration" path="/opportunity1"
allowedMethods="GET" doc:name="HTTP"/>
 <magento:get-order config-ref="Magento" orderId="100000003"
doc:name="Magento"/>
 <data-mapper:transform config-ref="SalesOrderEntity_To_List_Opportunity_"
doc:name="SalesOrderEntity To List<Opportunity>"/>
 <sfdc:create config-ref="Salesforce__Basic_Authentication" type="Opportunity"
doc:name="Salesforce">
 <sfdc:objects ref="#[payload]"/>
 </sfdc:create>
 <logger message="#[payload]" level="INFO" doc:name="Logger"/>
 </flow>
</mule>

4. POLL-Salesforce-Magento-Customer

i. Main Flow

The main objective of this flow is to pull salesforce records from it database and

parse it magento database, the basic settings for the flow is describe below the

diagram.

42

ii. Poll Scope Setting

Configure the poll scope according to the diagram below. I have set the frequency

to be fired in once a day (1 time per day). In the Watermark section, I am setting

the name of watermark; this name will be available to us as flow variable and can

be used in every run of flow and will be updated by polling component with the

value of CreatedDate at the end of each execution of flow. When the flow has

finished processing, Mule updates the value of the variable to the value of the flow

variable by named lastCreationDate. Its default value is the result of evaluating the

following expression: #['TODAY'].

Once we reach the last row in salesforce and there are no more results then the

process part of flow will not be executed until unless a new data is created in

salesforce and we will get the newly created data in the next run of flow i.e. after 1

day.

43

iii. Salesforce Connector

Using the MuleSoft Salesforce Cloud Connector we configure it to point to our

Salesforce environment and query for changes to the Contact entity. Using

DataSense, we configure which data items to pull back into our flow to form the

payload message we wish to process.

44

Here I am using the watermark set in polling component to query the salesforce to

get the latest values from the salesforce by using flowVars.lastCreationDate.

iv. Datamapper

Click Create mapping at the bottom of the DataMapper properties editor.

DataMapper displays the graphical mapping editor, shown below.

As you can see, DataMapper has automatically mapped the input and output fields,

since the field names coincide in the input and output.

45

v. Magento Connector Settings

The magento settings here is not different from what we have seen from the

previous tasks, after a successful configuration settings, we set the operation to

update customer from the information that was stored in datamapper which was

obtained from salesforce.

Example Use Case Code

46

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:magento="http://www.mulesoft.org/schema/mule/magento" xmlns:data-
mapper="http://www.mulesoft.org/schema/mule/ee/data-mapper"
xmlns:sfdc="http://www.mulesoft.org/schema/mule/sfdc"
xmlns:tracking="http://www.mulesoft.org/schema/mule/ee/tracking"
xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-current.xsd
http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/magento
http://www.mulesoft.org/schema/mule/magento/current/mule-magento.xsd
http://www.mulesoft.org/schema/mule/sfdc
http://www.mulesoft.org/schema/mule/sfdc/current/mule-sfdc.xsd
http://www.mulesoft.org/schema/mule/ee/tracking
http://www.mulesoft.org/schema/mule/ee/tracking/current/mule-tracking-ee.xsd
http://www.mulesoft.org/schema/mule/ee/data-mapper
http://www.mulesoft.org/schema/mule/ee/data-mapper/current/mule-data-mapper.xsd">
 <sfdc:config name="Salesforce__Basic_Authentication"
username="herbdolie25@gmail.com" password="goldeneagle259"
securityToken="dpFpnnaArcjG6Kpwei9GFJCNH" doc:name="Salesforce: Basic
Authentication"/>
 <magento:config name="Magento" username="api" password="107475508th"
address="http://magento-tyumenacm.rhcloud.com/index.php/api/v2_soap"
doc:name="Magento"/>
 <data-mapper:config name="List_Contact__To_CustomerCustomerEntityToCreate"
transformationGraphPath="list_contact__to_customercustomerentitytocreate.grf"
doc:name="List_Contact__To_CustomerCustomerEntityToCreate"/>
 <flow name="POLL-Salesforce-Magento-CustomerFlow"
processingStrategy="synchronous">
 <poll doc:name="Poll">
 <fixed-frequency-scheduler frequency="1" timeUnit="DAYS"/>
 <watermark variable="lastCreationDate" default-expression="#['TODAY']"
selector="LAST" selector-expression="#[payload.CreatedDate]"/>
 <sfdc:query-all config-ref="Salesforce__Basic_Authentication"
query="dsql:SELECT
CreatedDate,Email,FirstName,LastModifiedById,LastModifiedDate,LastName FROM Contact
WHERE CreatedDate > #[flowVars.LastCreationDate]" doc:name="Salesforce"/>
 </poll>
 <data-mapper:transform config-
ref="List_Contact__To_CustomerCustomerEntityToCreate" doc:name="List<Contact>
To CustomerCustomerEntityToCreate"/>
 <magento:create-customer config-ref="Magento" doc:name="Magento">
 <magento:customer ref="#[payload]"/>
 </magento:create-customer>
 <logger level="INFO" doc:name="Logger" message="#[payload]"/>
 </flow>
</mule>

47

5. POLL-Magento-Salesforce-Customer

i. Main Flow

Objective of this flow is the same to what we did previously when we used ‘HTTP’

to query information in magento database but here we used ‘POLL’, which will

done right here in the mule platform, it will query all records of customers in

Magento and parse it to Salesforce through DataMapper and later log the details of

the flow.

ii. Poll Scope Setting

Poll Scope: the poll scope requires changing the processing strategy of the flow to

“Synchronous”

48

The polling scope won’t work if you leave the default processing strategy, which is

asynchronous which will be show, the following errors:

Message: watermarking requires synchronous polling

Code: MULE_ERROR-344

For this scenario I configured the polling to occur every 30 seconds. To get only

updated records, I am implementing watermarking utilizing the LastName in the

payload as shown below:

iii. Magento Connector

49

For the basic settings of this connector, we set operation to ‘lists customer’ (query

all) all the records we have in the Magento database using a DataSense Query

Language as can be seen below:

iv. DataMapper

The mapping is created. Next you must tell DataMapper what input field matches

what output field. Notice that there already is an arrow joining LastName, Email

and FirstName on both the input and output schemas, as both fields have the same

name, DataMapper correctly assumed they were meant to be mapped together.

In this case, a mapping flow receives as input an XML document with lists of

customers and contacts with their contact information, and generates a JSON

document with a list of people and phone numbers. The input data looks like this:

50

v. Salesforce Connector

Configure the connector according to the following screenshot. So it will create new

contact in salesforce from the payload it receives from Magento

vi. Logger
Just as a way to test the flow and a message is placed inside to show the size of the

payload:

51

Example Use Case Code

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:data-mapper="http://www.mulesoft.org/schema/mule/ee/data-mapper"
xmlns:tracking="http://www.mulesoft.org/schema/mule/ee/tracking"
xmlns:magento="http://www.mulesoft.org/schema/mule/magento"
xmlns:http="http://www.mulesoft.org/schema/mule/http"
xmlns:sfdc="http://www.mulesoft.org/schema/mule/sfdc"
xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.mulesoft.org/schema/mule/magento
http://www.mulesoft.org/schema/mule/magento/current/mule-magento.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-current.xsd
http://www.mulesoft.org/schema/mule/ee/data-mapper
http://www.mulesoft.org/schema/mule/ee/data-mapper/current/mule-data-mapper.xsd
http://www.mulesoft.org/schema/mule/http
http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
http://www.mulesoft.org/schema/mule/sfdc
http://www.mulesoft.org/schema/mule/sfdc/current/mule-sfdc.xsd
http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/ee/tracking
http://www.mulesoft.org/schema/mule/ee/tracking/current/mule-tracking-ee.xsd">
 <http:listener-config name="HTTP_Listener_Configuration" host="0.0.0.0"
port="8081" doc:name="HTTP Listener Configuration"/>
 <magento:config name="Magento" username="api" password="107475508th"
address="http://magento-tyumenacm.rhcloud.com/index.php/api/v2_soap"
doc:name="Magento"/>
 <sfdc:config name="Salesforce__Basic_Authentication"
username="herbdolie25@gmail.com" password="goldeneagle259"
securityToken="dpFpnnaArcjG6Kpwei9GFJCNH" doc:name="Salesforce: Basic
Authentication"/>
 <data-mapper:config name="List_CustomerCustomerEntity__To_List_Contact_"
transformationGraphPath="list_customercustomerentity__to_list_contact_.grf"
doc:name="List_CustomerCustomerEntity__To_List_Contact_"/>

52

 <flow name="POLL-Magento-Salesforce-CustomerFlow"
processingStrategy="synchronous">
 <poll doc:name="Poll">
 <fixed-frequency-scheduler frequency="30" timeUnit="SECONDS"/>
 <watermark variable="LastName" default-expression="#['YESTERDAY']"
update-expression="#[flowVars['LastName']]"/>
 <magento:list-customers config-ref="Magento" filter="dsql:SELECT
email,firstname,lastname FROM CustomerCustomerEntity" doc:name="Magento"/>
 </poll>
 <data-mapper:transform config-
ref="List_CustomerCustomerEntity__To_List_Contact_"
doc:name="List<CustomerCustomerEntity> To List<Contact>"/>
 <sfdc:create config-ref="Salesforce__Basic_Authentication" type="Contact"
doc:name="Salesforce">
 <sfdc:objects ref="#[payload]"/>
 </sfdc:create>

 <logger message="Payload size is #[payload.size()]" level="INFO"
doc:name="Logger"/>
 </flow>

</mule>

6. HTTP-Salesforce-Magento-Order

i. Main Flow

The main of this flow is to query salesforce database for order (opportunity) and

parse the data to magento database as shown below:

ii. HTTP Listener

53

The HTTP endpoint is configured as shown below:

Connector configuration: HTTP_Listener_Configuration (localhost:8081)

Path: /order (the specific path to this flow where it will listen to any instruction

given to it).

Allowed method: GET.

iii. Salesforce Settings

Place an auto-paging-enabled connector, such as Salesforce inside the flow.

Configure the connector according to the following screenshot. Note that it queries

orders. This screen sets the following values:

 Display name: Salesforce

 Config Reference: Salesforce

 Operation: Query

 Language: DataSense Query Language

 Query Text: SELECT CreatedById,CreatedDate,Name FROM Opportunity

54

iv. DataMapper Settings

As you can see, Anypoint DataMapper has automatically created a top-level

mapping called Foreach 'Opportunity' → 'list', and mapped the field Name since

it is identical in the input and output panes.

v. Magento Settings

55

Example Use Case Code

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:magento="http://www.mulesoft.org/schema/mule/magento"
xmlns:http="http://www.mulesoft.org/schema/mule/http" xmlns:data-
mapper="http://www.mulesoft.org/schema/mule/ee/data-mapper"
xmlns:sfdc="http://www.mulesoft.org/schema/mule/sfdc"
xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-current.xsd
http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/magento
http://www.mulesoft.org/schema/mule/magento/current/mule-magento.xsd
http://www.mulesoft.org/schema/mule/http
http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
http://www.mulesoft.org/schema/mule/sfdc
http://www.mulesoft.org/schema/mule/sfdc/current/mule-sfdc.xsd
http://www.mulesoft.org/schema/mule/ee/data-mapper
http://www.mulesoft.org/schema/mule/ee/data-mapper/current/mule-data-mapper.xsd">
 <http:listener-config name="HTTP_Listener_Configuration" host="0.0.0.0"
port="8081" doc:name="HTTP Listener Configuration"/>
 <sfdc:config name="Salesforce__Basic_Authentication"
username="herbdolie25@gmail.com" password="goldeneagle259"
securityToken="dpFpnnaArcjG6Kpwei9GFJCNH" doc:name="Salesforce: Basic
Authentication"/>

56

 <magento:config name="Magento" username="api" password="107475508th"
address="http://magento-tyumenacm.rhcloud.com/index.php/api/v2_soap"
doc:name="Magento"/>
 <data-mapper:config name="List_Opportunity__To_List_OrderItemIdQty_"
transformationGraphPath="list_opportunity__to_list_orderitemidqty_.grf"
doc:name="List_Opportunity__To_List_OrderItemIdQty_"/>
 <flow name="http-salesforce-magento-orderFlow">
 <http:listener config-ref="HTTP_Listener_Configuration" path="/order"
allowedMethods="GET" doc:name="HTTP"/>
 <sfdc:query config-ref="Salesforce__Basic_Authentication" query="dsql:SELECT
CreatedById,CreatedDate,Name FROM Opportunity" doc:name="Salesforce"/>
 <data-mapper:transform config-ref="List_Opportunity__To_List_OrderItemIdQty_"
doc:name="List<Opportunity> To List<OrderItemIdQty>"/>
 <magento:create-order-shipment config-ref="Magento" orderId="0000001"
doc:name="Magento"/>
 <logger message="#[payload]" level="INFO" doc:name="Logger"/>
 </flow>
</mule>

7. POLL-Magento-Salesforce-Order

i. Main Flow

This flow regularly polls a resource, and then performs a series of operations on the

resulting payload. With every poll, the application acquires only the data that is

newly created or updated since the last call to the resource. In this example, Mule

stores watermarks in two variables:

 A persistent object store variable

 An exposed flow variable

57

ii. Poll Settings

Click the flow name bar to select the flow, and in the properties editor, set

the Processing Strategy to synchronous.

Note: All flows use an asynchronous processing strategy by default. If you do not set

the processing strategy to synchronous, polling with watermarks does not work!

Select the poll scope, and edit its properties according to the table below.

58

Watermark is a tool to simplify querying for updated objects, which is a very

common use case when synchronizing data.

iii. Magento Settings

Click the Magento connector, configure the connector settings, and set the operation

to ‘list order’ and use Query Builder to write your SQL so as to query the magento

database.

Configure the connector according to the following screenshot. This screen sets the

following values:

 Display name: Magento

 Config Reference: Magento

 Operation: Query

 Language: DataSense Query Language

 Query Text: (combine into one line in the connector’s field)

SELECT billing_address,billing_firstname,billing_lastname,billing_name FROM SalesOrderEntity

59

iv. DataMapper Connector

As you can see, Anypoint DataMapper has automatically created a top-level

mapping called Foreach 'list' → 'Opportunity', and mapped the field Name since

it is identical in the input and output panes.

v. Salesforce Settings

In this salesforce connector, it is configured to create an operation from

Opportunity as the object type and the field mapping will read from payload

meaning, it will get it data from datamapper, the data that datamapper stored

60

from magento when it was queried, the results from datamapper will be added

to the database of salesforce.

vi. Logger

This logger uses the MEL expression #[payload] to log the message payload

collected by the Magento connector every 1 hour.

Example Use Case Code

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:data-mapper="http://www.mulesoft.org/schema/mule/ee/data-mapper"
xmlns:magento="http://www.mulesoft.org/schema/mule/magento"
xmlns:sfdc="http://www.mulesoft.org/schema/mule/sfdc"
xmlns:tracking="http://www.mulesoft.org/schema/mule/ee/tracking"
xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"
 xmlns:spring="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-current.xsd

61

http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/magento
http://www.mulesoft.org/schema/mule/magento/current/mule-magento.xsd
http://www.mulesoft.org/schema/mule/sfdc
http://www.mulesoft.org/schema/mule/sfdc/current/mule-sfdc.xsd
http://www.mulesoft.org/schema/mule/ee/tracking
http://www.mulesoft.org/schema/mule/ee/tracking/current/mule-tracking-ee.xsd
http://www.mulesoft.org/schema/mule/ee/data-mapper
http://www.mulesoft.org/schema/mule/ee/data-mapper/current/mule-data-mapper.xsd">
 <sfdc:config name="Salesforce__Basic_Authentication"
username="herbdolie25@gmail.com" password="goldeneagle259"
securityToken="dpFpnnaArcjG6Kpwei9GFJCNH" doc:name="Salesforce: Basic
Authentication"/>
 <magento:config name="Magento" username="api" password="107475508th"
address="http://magento-tyumenacm.rhcloud.com/index.php/api/v2_soap"
doc:name="Magento"/>
 <data-mapper:config name="List_SalesOrderEntity__To_List_Opportunity_"
transformationGraphPath="list_salesorderentity__to_list_opportunity_.grf"
doc:name="List_SalesOrderEntity__To_List_Opportunity_"/>
 <flow name="poll-magento-salesforce-orderFlow" processingStrategy="synchronous">
 <poll doc:name="Poll">
 <fixed-frequency-scheduler frequency="1" timeUnit="HOURS"/>
 <watermark variable="lastCreationDate" default-expression="#['TODAY']"
update-expression="#[flowVars['lastCreationDate']]"/>
 <magento:list-orders config-ref="Magento" filter="dsql:SELECT
billing_address,customer_id,status FROM SalesOrderEntity" doc:name="Magento"/>
 </poll>
 <data-mapper:transform config-
ref="List_SalesOrderEntity__To_List_Opportunity_"
doc:name="List<SalesOrderEntity> To List<Opportunity>"/>
 <sfdc:create config-ref="Salesforce__Basic_Authentication" type="Opportunity"
doc:name="Salesforce">
 <sfdc:objects ref="#[payload]"/>
 </sfdc:create>
 <logger message="#[payload]" level="INFO" doc:name="Logger"/>
 </flow>
</mule>

8. POLL-Salesforce-Magento-Order

i. Main Flow

The aim of this flow is to query order from magento and map it to salesforce.

62

ii. Salesforce Connector

Place an auto-paging-enabled connector, such as Salesforce inside a poll scope.

Configure the connector according to the following screenshot. Note that the query

orders the output in ascending order of LastModifiedDate so that the last item in the

list is the newest. This detail is critical. This screen sets the following values:

63

 Display name: Salesforce

 Config Reference: Salesforce

 Operation: Query

 Language: DataSense Query Language

 Query Text: (combine into one line in the connector’s field)

iii. Poll Settings

Configure the poll scope according to the table below. The watermark is a variable

named lastCreationDate. When you iterate through the collection, later in your flow,

Mule updates the value of the variable to the value you put in the Selector field, in

this case #[payload.CreatedDate]. Its default value is the result of evaluating the

following expression: ['TODAY'].

iv. DataMapper

64

v. Magento

Example Use Case Code

Paste this XML code into Anypoint Studio to experiment with the two flows

described in the previous section.

65

List of all http urls

The first element, an HTTP listener, listens on localhost port 8081 (the default) for

incoming GET requests. Hitting the listener triggers the flow. Requests to the HTTP

listener must take the form:

http://localhost:8081?<query>

The <query> part of the request consists of the parameters accepted by the REST

API. When the HTTP listener receives the HTTP request, the <query> part of the

URL is recorded as a set of inbound properties. The HTTP listener passes these

properties to the next element in the flow, the HTTP request connector. This

outbound connector is configured to query the remote REST API

at http://baconipsum.com/api. The HTTP request connector uses a couple of

simple MEL expressions to extract the query parameters from the message it

received from the listener, and to construct the full URL for the remote API,

including the query parameters.

Flow Name Path Method Description

HTTP-Magento-

Salesforce

Customer

/sync GET Open the HTTP connector’s

properties editor and give it the

path sync. Then create a Connector

Configuration element for it and

set its host to localhost and port

to 8081. In this way, you can reach

the connector via

the http://localhost:8081/sync URI.

HTTP-Salesforce-

Magento Customer

/Customer GET http://localhost:8081/customer

HTTP-Salesforce-

Magento Order

/order GET http://localhost:8081/order

HTTP-Magento-

Salesforce Order

/Opportunity1 GET http://localhost:8081/opportunity1

http://localhost:8081/sync
http://localhost:8081/customer
http://localhost:8081/order
http://localhost:8081/opportunity1

66

CONCLUSION

The first goal of the thesis was to explore the core of EAI (Enterprise Application

Integration) and to select a set of Open Source licensed EAI products for the

comparison. The EAI has been successfully explored and the ESB concept of EAI

was selected as the most mature and the most powerful. Then we were looking for

available Open Source licensed ESB products.

The second goal of the thesis was to find a set of criteria for comparison of the

selected product (salesforce and Magento). The criteria were selecting that they

were taking into account the possibility of using the ESBs in the enterprise

environment.

The last and the main goal of the thesis were to perform the comparison and

integration of the products according to selected criteria and to evaluate the results.

67

REFERENCES
1. http://www.citeck.ru/o-kompanii/platformy-i-tehnologii/mule-esb/

2.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.735.2872&rep=rep1&ty

pe=pdf

3. https://developer.salesforce.com/docs/atlas.en

us.api_asynch.meta/api_asynch/asynch_api_reference_schema.htm

4.

http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techop

s/atc_comms_services/swim/documentation/media/briefings/Service_Registry_Bro

wn_Bag_March2011_v0.5_030911.ppt

5. https://www.progress.com/connectors/salesforce

6. https://www.progress.com/blogs/export-salesforce-entity-relationship-(er)-

diagrams-to-visio

7. "magento/magento2−community−edition". GitHub. Retrieved 2016−03−14.

8. "Magento Community Edition 1.9.2.4 Release

Notes". merch.docs.magento.com. Retrieved 2016−03−14.

9. "Magento Community Edition 2.0.4 Release Notes". merch.docs.magento.com.

Retrieved 2016−03−14.

10. https://docs.mulesoft.com/mule-user-guide/v/3.7/mule-application-architecture

11. https://docs.mulesoft.com/mule-user-guide/v/3.7/mule-concepts

12. https://www.mulesoft.com/resources/esb/enterprise-application-integration-eai-

and-esb

http://www.citeck.ru/o-kompanii/platformy-i-tehnologii/mule-esb/
https://developer.salesforce.com/docs/atlas.en%20us.api_asynch.meta/api_asynch/asynch_api_reference_schema.htm
https://developer.salesforce.com/docs/atlas.en%20us.api_asynch.meta/api_asynch/asynch_api_reference_schema.htm
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/briefings/Service_Registry_Brown_Bag_March2011_v0.5_030911.ppt
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/briefings/Service_Registry_Brown_Bag_March2011_v0.5_030911.ppt
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/atc_comms_services/swim/documentation/media/briefings/Service_Registry_Brown_Bag_March2011_v0.5_030911.ppt
https://www.progress.com/connectors/salesforce
https://www.progress.com/blogs/export-salesforce-entity-relationship-(er)-diagrams-to-visio
https://www.progress.com/blogs/export-salesforce-entity-relationship-(er)-diagrams-to-visio
https://github.com/magento/magento2-community-edition
http://merch.docs.magento.com/ce/user_guide/magento/release-notes-ce-1.9.2.4.html
http://merch.docs.magento.com/ce/user_guide/magento/release-notes-ce-1.9.2.4.html
http://devdocs.magento.com/guides/v2.0/release-notes/ReleaseNotes2.0.4CE.html
https://docs.mulesoft.com/mule-user-guide/v/3.7/mule-application-architecture
https://docs.mulesoft.com/mule-user-guide/v/3.7/mule-concepts
https://www.mulesoft.com/resources/esb/enterprise-application-integration-eai-and-esb
https://www.mulesoft.com/resources/esb/enterprise-application-integration-eai-and-esb

68

List of Abbreviations

The following list contains abbreviations used in this document.

API Application Programming Interface

EAI Enterprise Application Integration

ESB Enterprise Service Bus

JAR Java Archive

Java EE 5 Java Platform, Enterprise Edition v. 5

JBI Java Business Integration

HTTP The Hypertext Transfer Protocol

JDBC Java Database Connectivity

JMX Java Management Extensions

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol (deprecated)

WSDL Web Services Description Language

XML eXtensible Markup Language

GUI Graphic User Interface

API Application Program Interface

UI User Interface

EIP Enterprise Integration Patterns

CRM Customer Relationship Management

SFDC SalesForceDotCom

JSON JavaScript Object Notation

SQL Structured Query Language

