# MORPHOLOGY OF JUVENILE STAGES OF HERMANNIELLA DOLOSA (ACARI, ORIBATIDA, HERMANNIELLIDAE)

#### S. G. Ermilov

Center of Independent Examinations-NN, Nizhniy Novgorod 603107, Russia; e-mail: ErmilovAcari@yandex.ru

ABSTRACT: The morphology of juvenile stages of the oribatid mite  $Hermanniella\ dolosa\ (Oribatida, Hermanniellidae)$  is described and illustrated. Juvenile stages of  $Hermanniella\ dolosa\ are\ very\ similar\ in\ structure\ to\ those\ of\ the\ only\ other\ known\ juvenile\ stages\ of\ this\ family\ (Sacculobates\ horologiorum,\ Ampullobates\ nigriclavatus),\ showing\ only\ fine\ differences\ in\ setation\ and\ setal\ structure. These differences\ include\ the\ absence\ of\ seta\ <math>h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$  in the larva, the absence of one seta a from all leg tarsi and pair  $h_3$ 

KEY WORDS: Hermanniella dolosa, Hermanniellidae, morphology, juvenile stages, ontogeny, development, oribatid mite

#### INTRODUCTION

The oribatid mite family Hermanniellidae (Acari, Oribatida) includes 9 genera with 53 species. Collectively, the family is cosmopolitan, being widespread, except for Antarctica (Subías 2004). The nominate genus Hermanniella Berlese, 1908 includes 35 named species and is the largest genus in this family. Grandjean (1953) noted several important features of juvenile stages in his family diagnosis, which was based only on Hermanniella prior to his more inclusive diagnosis (1962a). But ontogeny has not yet been fully described for any Hermaniella species and the little published information about juveniles of other genera is incomplete: Grandjean (1962 a, b) described larvae, proto- and deutonymphs of Sacculobates horologiorum Grandjean, 1962 and protoand tritonymphs of Ampullobates nigriclavatus Grandjean, 1962.

The purpose of the present work is to describe and illustrate the morphology of all juvenile stages of the palearctic species *Hermanniella dolosa* Grandjean, 1931.

#### **MATERIALS AND METHODS**

The available material included 29 juveniles of *Hermanniella dolosa*: 11 larvae, 7 protonymphs, 4 deutonymphs, 7 tritonymphs. All studied specimens (except 8 larvae) of these species were collected by myself in the European part of Russia (the Nizhniy Novgorod Region, Volodarskiy District) during the spring of 2007–2009. Mites were found in soil near marsh (geographical coordinates: 56°12′N, 43°21′E) and in soil of a mixed wood (56°15′N, 43°40′E). Eight additional larvae were obtained from a laboratory culture. Methods

of cultivation were presented earlier (Ermilov 2008), but the specific diet of *Hermanniella dolosa* I was not determined.

The illustrated specimens were permanently mounted and studied on flat microscope slides.

Leg setation is given in parentheses, according to the sequence trochanter-femur-genu-tibiatarsus. All formulas of leg solenidia are given in square brackets, according to the sequence genutibia-tarsus. All body measurements are presented in micrometers.

#### **RESULTS**

**Dimensions**. Total length of: larva 199–215 (mean 209), protonymph 315–332 (mean 325), deutonymph 381–448 (mean 410), tritonymph 498–564 (mean 526). Total width of: larvae 116, protonymph 182, deutonymph 215–265 (mean 223), tritonymph 282–298 (mean 589). Measurements and setation changes of juvenile stages given in Tables 1 and 2.

**Integument**. Body cuticle of larva colourless. Body cuticle of nymphs light grey, often with weak, pale green shade. Legs and gnathosoma more sclerotized, brownish; rutelli black-brownish, digits of chelicerae black-brownish.

Cerotegument covers body in all stages. Cerotegument of larva weakly visible, that of nymphs well visible. Two types of cerotegument in nymphs: microgranules (very small) and almost hemispherical tubercles (diameter 4–8). Body setae always without cerotegument.

**Prodorsum** (Figs. 1, 2, 31, 32, 35, 38). Relatively short, about half-length of gastronotic region in lateral view. Triangular form in dorsal

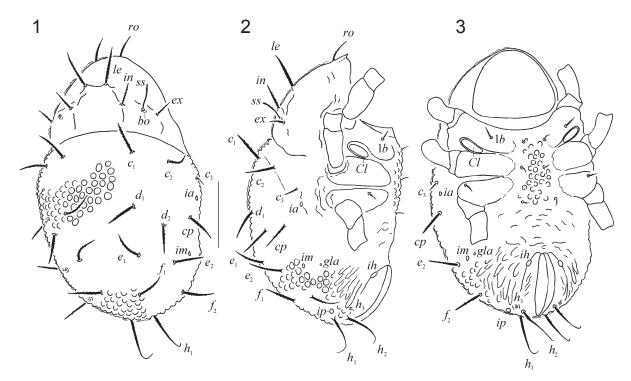



Fig. 1–3. *Hermanniellla dolosa*, larva: 1 — dorsal view, legs removed; 2 — lateral view, gnathosoma and legs (partly) removed; 3 — ventral view, gnathosoma and legs (partly) removed. Scale bar 50 µm.

Table 1 Comparison of body and prodorsal setae measurements of *Hermanniella dolosa* during ontogeny

| Character                     | Larva | Protonymph | Deutonymph | Tritonymph |
|-------------------------------|-------|------------|------------|------------|
| Length of rostral setae       | 20    | 20–24      | 24–32      | 28–45      |
| Length of lamellar setae      | 28–32 | 41–45      | 53–61      | 61–82      |
| Length of interlamellar setae | 16–20 | 28         | 36–45      | 53–69      |
| Length of sensilli            | 20–24 | 53–61      | 61–69      | 69–86      |
| Length of exobothridial setae | 12–16 | 16–20      | 20–28      | 20–28      |

view. Rostrum broadly rounded, tip arrow-shaped (well visible if to look at a copy laterally; Fig. 2). Cuticle with rare folds.

Setae *ro*, *le*, *in* strongly developed, straight or weakly curved, barbed, set on small apophyses. Setae *le* longest and thickest setae of prodorsum (Fig. 4). Setae *ex* shortest, setiform or sometimes weakly lanceolate (in larva), barbed (Fig. 5). Larval sensilli (*ss*) and bothridia (*bo*) weakly developed; sensillus setiform, barbed (Fig. 6), and bothridium sack-shaped. Nymphal sensilli and bothridia well developed; sensillus with well developed club, barbed (Fig. 7), and bothridium funnel-shaped, with large opening.

**Gastronotic region** (Figs. 1–3, 8, 31–39). Rounded posteriorly. Cuticle of larva with large with convexities (tubercles, diameter 6–9) that are almost hemispherical, and crowded together (Fig. 8). Typical distance between tubercles much more

less than their diameter. Cuticle of nymphs with tubercles (diameter of tubercles 4–6), but less dense than in larva. Typical distance between tubercles greater to slightly less than their diameter Deutonymphs and tritonymphs with well developed dehiscence lines (Figs. 34, 35, 37, 38), becoming indistinct posteriorly; larva and protonymph with dehiscence line developed only anteriorly (Figs. 2, 31, 32).

Larvae with 13 pairs of gastronotic setae; nymphs with 16 pairs. Setae  $c_1$ ,  $c_2$ , cp,  $d_1$ ,  $d_2$ ,  $e_1$ ,  $e_2$ ,  $f_2$  long, strongly developed, straight or weakly curved, barbed, set on small apophyses. Setae  $c_3$ ,  $p_3$  (Figs. 18, 19) shorter, setiform, barbed, set on small apophyses. Setae  $p_1$  long, with flagellate tips, smooth or weakly barbed proximally, on apophyses. Morphology of other setae changes during ontogeny. Setae  $f_1$ : long, strongly, barbed in larva (Fig. 8); short, spine-like, slightly thickened,

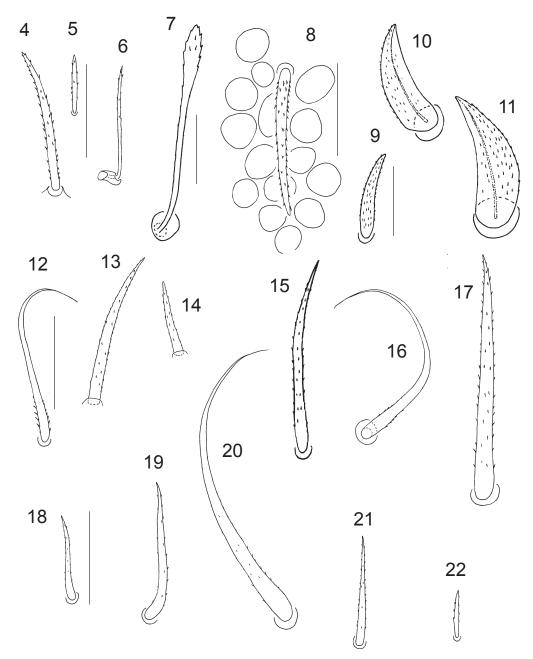



Fig. 4–22. Hermanniellla dolosa, juveniles, shapes of various setiform organs of larva (La), protonymph (Pn), deutonymph (Dn) and tritonymph (Tn): 4— seta le (La); 5— seta ex (La); 6— sensillus (L); 7— sensillus (Pn); 8— seta  $f_1$  with tubercles (L); 9— seta  $f_1$  (Pn); 10— seta  $f_1$  (Dn); 11— seta  $f_1$  (Tn); 12— seta  $f_1$  (L); 13— seta  $f_1$  (Pn); 14— seta  $f_2$  (Pn); 15— seta  $f_3$  (Pn); 16— seta  $f_4$  (Pn); 17— seta  $f_4$  (Pn); 18— seta  $f_5$  (Pn); 19— seta  $f_7$  (Pn); 19— seta  $f_8$  (Pn); 19— seta 19 (Pn); 19 (Pn)

barbed in protonymph (Fig. 9); thorn-like, thick, with very thin internal core, barbed in deuto-, tritonymph (Fig. 10, 11). Setae  $h_1$ : largest seta, with flagellate tips, weakly barbed proximally in larva (Fig. 12); long, straight, without flagellate tips, barbed in nymphs (Fig. 13). Setae  $h_2$ : largest seta, with flagellate tips, weakly barbed proximally in larva; shorter, strongly, without flagellate tips, barbed in nymphs (Fig. 14). Setae  $h_3$ : minute in larva; long, straight, barbed in nymphs (Fig. 15). Setae  $p_2$ : long, with flagellate tips, smooth or

weakly barbed proximally in protonymph (Fig. 16); long, strongly, without flagellate tips, barbed in deuto- and tritonymph (Fig. 17).

Cupules *ia*, *im*, *ip* and opisthosomal gland opening (*gla*) well visible in larva and protonymph, but indistinct in deuto- and tritonymph. Apertures of opisthosomal glands normal, without tube shape.

**Anogenital region** (Figs. 3, 33, 36, 39). Cuticle of anogenital region with tubercles. Ontogenetic genital, aggenital, adanal, anal formulas,

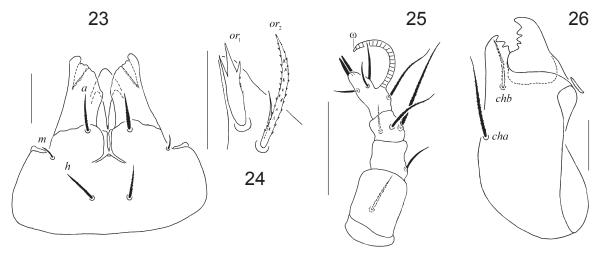



Fig. 23–26. Hermanniellla dolosa, larva: 23 — infracapitulum; 24 — setae  $or_1$  and  $or_2$ ; 25 — palp; 26 — chelicera. Scale bars 20  $\mu$ m (23, 25, 26), 10  $\mu$ m (24).

Table 2 Setation of *Hermanniella dolosa* during ontogeny\*

| Character                  | Larva | Protonymph | Deutonymph | Tritonymph |
|----------------------------|-------|------------|------------|------------|
| Epimeral setation          | 3-1-2 | 3-1-2-1    | 3-1-2-3    | 3-1-2-3    |
| Number of notogaster setae | 13    | 16         | 16         | 16         |
| Number of genital setae    | 0     | 1          | 4          | 6          |
| Number of aggenital setae  | 0     | 0          | 1          | 1          |
| Number of adanal setae     | 0     | 0          | 3          | 3          |
| Number of anal setae       | 0     | 0          | 0          | 2          |

<sup>\*</sup> In pairs

larva to tritonymph, are 0–1–4–6, 0–0–1–1, 0–0–3–3, 0–0–0–2 respectively. Genital setae setiform, barbed, with different lengths (lateral setae longer than medial). Aggenital setae setiform, barbed. Adanal setae:  $ad_1$  long, with flagellate tips, weakly barbed proximally (Fig. 20);  $ad_2$  and  $ad_3$  shorter, setiform, barbed (Fig. 21). Deutonymphs with 2 pairs of vestigial alveoli (Fig. 36). Tritonymphal anal setae setiform, smooth;  $an_1$  longer, than  $an_2$ ).

Cupules (*ih*, *ips*, *iad*) well visible in larva and protonymph, indistinct in deutonymph, nearly invisible in tritonymph.

**Epimeral region** (Figs. 3, 33, 36, 39). Epimera with paired, smooth plates having well defined borders; soft sternal region with tubercles. Setal formulas for epimeres: larva: 3–1–2 (third setae of the first epimeres (1*c*) forms protective scale over Claparède's organ); protonymph: 3–1–2–1; deuto-, tritonymph: 3–1–2–3. Epimeral setae short, setiform, weakly barbed (Fig. 22).

**Gnathosoma** (Figs. 23–26). Infracapitular mentum wider than long (Table 3). Hypostomal

setae a and h long, setiform, barbed; seta a sometimes weakly expanded in middle-proximal parts. Seta m shorter, setiform, weakly barbed (Fig. 23). Lateral lips with 2 pairs of adoral setae (or) in all instars. Seta  $or_1$  expanded, with 3 distinct points;  $or_2$  long, thick, barbed, but with short, thin, smooth branch near base (Fig. 24).

Palps slender, with 5 segments. Palpal setation: larvae and protonymphs: 0-1-1-3-6 ( $+1\omega$ ); deuto- and tritonymphs: 0-2-1-3-6 ( $+1\omega$ ). Palpal setae smooth and barbed. Palpal solenidion long, thick, claw-shaped (Fig. 25, Table 3).

Chelicerae with few blunt teeth on fixed and movable digits. Cheliceral setae long, setiform, barbed (*cha* longer, than *chb*) (Fig. 26, Table 3).

**Legs** (Figs. 27–30, 40–43) Tarsi with 1 simple claw. Most setae long, barbed. Setae p of tarsus I short, thin, smooth; setae p absent from tarsi II–IV. Setae u large, mostly barbed, distally flattened, ribbon-like. Tibia I–III and genua I–III with seta d and solenidion coupled on dorsal side; relative lengths of some change during ontogeny: larva with seta d of all genua and of tibia I, II shorter than

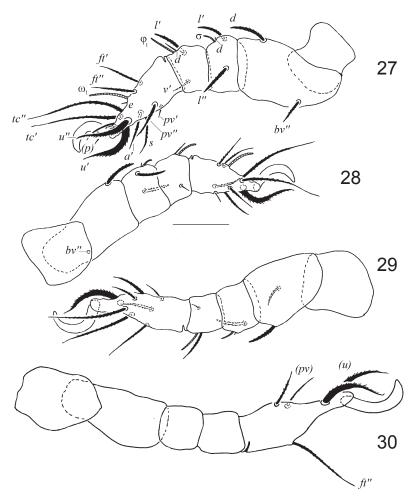



Fig. 27–30. Hermanniella dolosa, juveniles: 27–29 — larva, legs I–III, respectively; 30 — protonymph, leg IV. Scale bar 20  $\mu m$ .

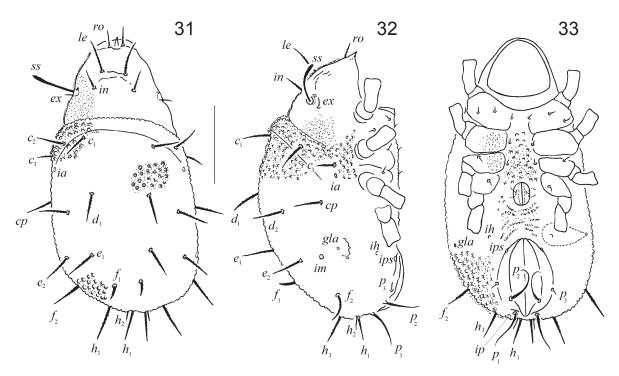



Fig. 31–33. *Hermanniella dolosa*, protonymph: 31 — dorsal view, legs removed; 32 — lateral view, legs partly removed; 33 — ventral view, legs partly removed. Scale bar  $100 \, \mu m$ .

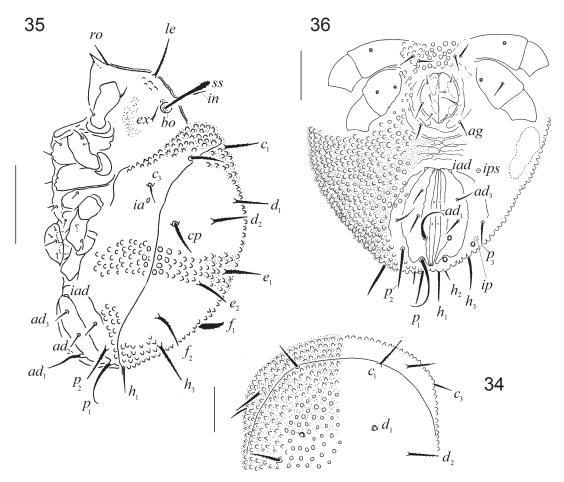



Fig. 34–36. *Hermanniella dolosa*, deutonymph: 34 — gastronotic anterior margin; 35 — lateral view, legs partly removed; 36 — anogenital region, legs partly removed. Some setae of gastronotic region and epimeres is broken. Scale bars 50 μm (34, 36), scale bar 100 μm (35).

Table 3 Size changes in the gnathosoma of *Hermanniella dolosa* during ontogeny

| Character                | Larva | Protonymph | Deutonymph | Tritonymph |
|--------------------------|-------|------------|------------|------------|
| Length of infracapitulum | 65–73 | 73–77      | 86–94      | 98–106     |
| Width of infracapitulum  | 77–82 | 77–86      | 98–102     | 110–118    |
| Length of palps          | 28–41 | 36–45      | 41–49      | 49–57      |
| Length of chelicerae     | 86–90 | 94–102     | 106–114    | 118–127    |

solenidion, on tibia III setae d longer than solenidion; nymphs with setae d shorter than solenidion on tibia I, often similar to solenidion on genua and on tibia II, and longer than solenidion on tibia III, IV. Solenidia  $\omega_1$  (tarsus I),  $\omega_1$ ,  $\omega_2$  (tarsus II) rod-shaped, sharp at tip; other solenidia setiform.

Leg formulas: larva: I (0-2-3-3-13) [1-1-1], II (0-2-3-2-10) [1-1-1], III (0-2-2-2-9) [1-1-0]; protonymph: I (0-2-3-3-13) [1-1-2], II (0-2-3-2-10) [1-1-1], III (0-2-2-2-9) [1-1-0], IV (0-0-0-0-5) [0-0-0]; deutonymph: I (0-2-3-3-13) [1-2-2], II (0-2-3-2-10) [1-1-2], III (1-2-2-2-9) [1-1-0], IV (0-2-1-1-9) [0-1-0]; tritonymph: I (1-4-3-4-15) [1-2-2], II

 $\begin{array}{l} (1-4-3-3-10) \ [1-1-2], \ III \ (2-3-2-3-9) \ [1-1-0], \\ IV \ (1-2-2-2-9) \ [0-1-0]; \ adult: \ I \ (1-5-5-5-17) \\ [1-2-2], II (1-5-5-5-12) [1-1-2], III (2-3-3-3-10) \\ [1-1-0], \ IV \ (1-3-3-3-10) \ [0-1-0]. \ Specific \ ontogeny \ of \ leg \ setae \ and \ solenidia \ given \ in \ Table \ 4. \end{array}$ 

#### **DISCUSSION**

Juvenile stages of *Hermanniella dolosa* are very similar in structure to those of other studied Hermanniellidae (Grandjean 1953, 1962 a, b): *Hermanniella* sp., *Sacculobates horologiorum* and *Ampullobates nigriclavatus*. For example, they are identical in genital, aggenital, adanal, anal and epimeral setal formulas and have similar structure

## Morphology of juvenile stages of Hermanniella

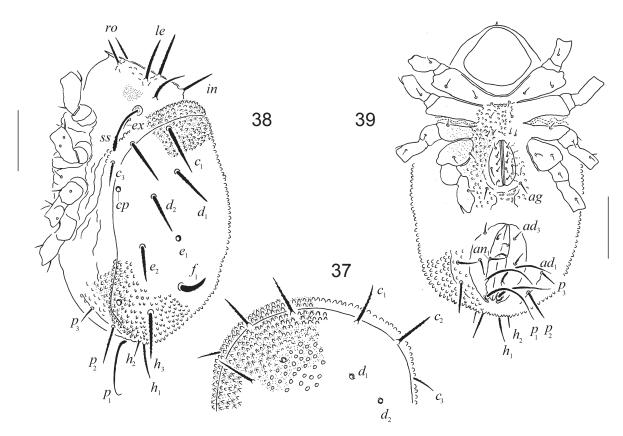



Fig. 37–39. *Hermanniella dolosa*, tritonymph: 37 — gastronotic anterior margin; 38 — lateral view, legs partly removed; 39 — anogenital region, legs partly removed. Some setae of gastronotic region, epimeres and legs is broken. Scale bar 50  $\mu$ m (37), scale bars 100  $\mu$ m (38, 39).

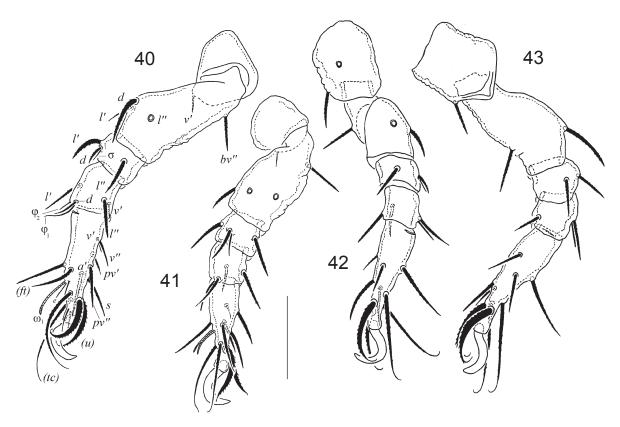



Fig. 40–43. Hermanniella dolosa, tritonymph: legs I–IV, respectively. Some setae of legs is broken. Scale bar 50  $\mu m$ .

Table 4 Development of legs setation of *Hermanniella dolosa* during ontogeny\*

|            | Trochanter | Femur  | Genu                     | Tibia                   | Tarsus                                           |  |
|------------|------------|--------|--------------------------|-------------------------|--------------------------------------------------|--|
|            |            |        | Leg I                    |                         |                                                  |  |
| Larva      | _          | d, bv" | dσ, (l)                  | $d\phi_1$ , $l'$ , $v'$ | (ft), (tc), (p), (u), a', s, (pv), e, $\omega_1$ |  |
| Protonymph | _          | -      | _                        | _                       | $\omega_2$                                       |  |
| Deutonymph | _          | -      | _                        | $\phi_2$                | _                                                |  |
| Tritonymph | v'         | (l)    | _                        | l''                     | (v)                                              |  |
| Adult      | -          | v"     | (v)                      | v''                     | (1)                                              |  |
| Leg II     |            |        |                          |                         |                                                  |  |
| Larva      | _          | d, bv" | <i>d</i> σ, ( <i>l</i> ) | <i>d</i> φ, <i>v'</i>   | $(ft), (tc), (u), a', s, (pv), \omega_1$         |  |
| Protonymph | _          | -      | _                        | _                       | _                                                |  |
| Deutonymph | _          | -      | _                        | _                       | $\omega_2$                                       |  |
| Tritonymph | v'         | (l)    | _                        | l''                     | _                                                |  |
| Adult      | _          | v"     | (v)                      | l', v''                 | (v)                                              |  |
|            |            |        | Leg III                  |                         |                                                  |  |
| Larva      | _          | d, ev' | <i>d</i> σ, <i>l'</i>    | <i>d</i> φ, <i>v'</i>   | ft", (tc), (u), a", s, (pv)                      |  |
| Protonymph | _          | -      | _                        | _                       | _                                                |  |
| Deutonymph | v'         | -      | _                        | _                       | _                                                |  |
| Tritonymph | l'         | l'     | _                        | v''                     | _                                                |  |
| Adult      | _          | _      | v'                       | _                       | v'                                               |  |
|            |            |        | Leg IV                   |                         |                                                  |  |
| Protonymph | _          | -      | _                        | _                       | ft", (u), (pv)                                   |  |
| Deutonymph | _          | d, ev' | d                        | dφ                      | (tc), a", s                                      |  |
| Tritonymph | v'         | -      | l'                       | v'                      | _                                                |  |
| Adult      | _          | l'     | v'                       | v''                     | ν'                                               |  |

<sup>\*</sup> Roman letters refer to normal setae, Greek letters refer to solenidia, e — famulus,  $d\sigma$  and  $d\phi$  — solenidia and seta coupled. One apostrophe (') marks setae on anterior and double apostrophe (") setae on posterior side of the given leg segment. Parentheses refer to a pair of setae. Setae are listed only for the stage in which they first appear.

of cuticle and cerotegument. Gastronotic setation differs slightly, because seta  $h_3$  forms in the larva of H. dolosa, but not that of S. horologiorum; also, there are other fine differences in form of the body setation (Table 5). Leg setation of Hermanniella dolosa also differs, for example: 1) tarsi II–IV without setae p (present in S. horologiorum, A. ni-griclavatus), 2) all tarsi (except tarsus I of tritonymphs) with 1 seta a (2 setae a in S. horologiorum, A. ni-griclavatus), 3) on trochanter III seta l' appears in deutonymph (protonymph in S. horologiorum, A. ni-griclavatus).

Grandjean (1953, 1962a) listed several characters as representing the family Hermanniellidae, one of which was paraproctal atrichosy from larva to deutonymph. However, deutonymphs of *Hermanniella dolosa* have 2 pairs of vestigial alveoli, so the regression is incomplete. This should be indicated in any future diagnosis of the family.

#### **ACKNOWLEDGEMENTS**

The author cordially thanks Prof. Dr. Roy A. Norton, State University of New York, Syracuse, USA, for his consultation and help with collecting literature, for his thorough review of this manuscript and many valuable suggestions.

#### **REFERENCES**

Ermilov, S.G. 2008. Laboratornoe kul'tivirovanie oribatidnykh kleshchey nadsemeystva Crotonioidea (Acari, Oribatida) s tsel'yu izucheniya ikh razvitiya. Nizhniy Novgorod, 54 pp. [In Russian]

Grandjean, F. 1953. Essai de classification des Oribates (Acariens). *Bull. Soc. zool. France*, 78 (5–6): 421–446.

Grandjean, F. 1962a. Au sujet des Hermanniellidae (Oribates). *Acarologia*, 4 (2): 237–273.

Grandjean, F. 1962b. Au sujet des Hermanniellidae (Oribates). Deuxième partie. *Acarologia*, 4 (4): 632–670.

### Morphology of juvenile stages of Hermanniella

Table 5
Differentiation of juvenile stages of *Hermanniella dolosa*, *Sacculobates horologiorum* and *Ampullobates nigriclavatus*\*

| Character                                | H. dolosa         |                   | S. horol           | A. nigriclavatus   |                               |
|------------------------------------------|-------------------|-------------------|--------------------|--------------------|-------------------------------|
| Character                                | Larva             | Nymphs            | Larva              | Nymphs             | Nymphs                        |
| Setae le                                 | Setiform          | Setiform          | Expanded distally  | Expanded distally  | Hardly expanded distally      |
| Length le and in                         | le longer than in | le longer than in | le shorter than in | le shorter than in | le shorter than in            |
| Sensilli                                 | Weakly developed  | Well developed    | Weakly developed   | Weakly developed   | Weakly developed              |
| Gastronotic setae, in pairs              | 13                | 16                | 12                 | 16                 | 16                            |
| Setae $c$ , $d$ , $e$ , $f$ <sub>2</sub> | Setiform          | Setiform          | Expanded distally  | Expanded distally  | Setiform or expanded distally |
| Setae $f_1$                              | Setiform          | Thorn like        | Expanded distally  | Expanded distally  | Setiform or expanded distally |
| Setae h <sub>3</sub>                     | Minute            | Setiform          | Absent             | Expanded distally  | Tape-shaped                   |

<sup>\*</sup> Data for Sacculobates horologiorum from Grandjean (1962a); data for Ampullobates nigriclavatus from Grandjean (1962b).

Subías, L.S. 2004. Listado sistematico, sinonimico y biogeografico de los acaros oribatidos (Acariformes, Oribatida) del mundo (1758–2002). *Graellsia*, 60. Numero extraordinario: 3–305. Listado sistematico, sinonimico y biogeografico de

los acaros oribatidos (Acariformes, Oribatida) del mundo (excepto fosiles). Actualizado en abril de 2009. http://www.ucm.es/info/zoo/Artropodos/Catalogo.pdf