На правах рукописи

Panance/

Ракашов Александр Анатольевич

Направленное формирование структуры электролитических сплавов Zn-Ni-Co, Zn-Ni, Co-Ni-Mn, Co-Mn, Cr-Ni-Co с повышенными функциональными свойствами

02.00.04 – физическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Тюмень - 2013

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Тюменский государственный нефтегазовый университет»

Научный руководитель	доктор химических наук, профессор Жихарева Ирина Георгиевна					
Официальные оппоненты:	Баканов Вячеслав Иванович доктор химических наук, профессор, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тюменский государственный университет», профессор кафедры неорганической и физической химии					
	Полещук Ирина Николаевна кандидат химических наук, доцент, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тюменский государственный архитектурно-строительный университет», доцент кафедры общей и специальной химии					
Ведущая организация	Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»					

Защита состоится «05» декабря 2013 г. в 16 часов 00 минут на заседании диссертационного совета Д212.274.11 при Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Тюменский государственный университет» по адресу: 625003, г. Тюмень, ул. Перекопская, 15а, аудитория 410.

С диссертацией можно ознакомиться в информационно-библиотечном центре Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Тюменский государственный университет».

Автореферат разослан «01» ноября 2013 года.

Ученый секретарь диссертационного совета, кандидат химических наук

ofer-

Нестерова Н.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Электрохимические сплавы находят широкое применение в различных областях техники в качестве защитно-коррозионных конструкционных материалов, покрытий, покрытий с особо ценными свойствами: магнитными, каталитическими, электропроводными и др. Чаще всего на практике используются бинарные сплавы на основе металлов подгруппы железа или на основе цинка, они превосходят литые сплавы по экономичности (за счет меньшей толщины) и чистоты осадка, но проигрывают высоколегированным сталям по избирательности и по качеству. С этой точки зрения представляется целесообразным применение тройных сплавов взамен бинарных. Но, к сожалению, внедрение тройных сплавов тормозится из-за их сложного фазового состава, переменного химического состава. Систематических исследований по исследованию структуры и функциональных свойств тройных электролитических сплавов практически не проводилось, за редким исключением (В.В. Шмидт).

Основным методом осаждения для бинарных сплавов является стационарный. Однако, несмотря на определенные достоинства, этот метод имеет и существенные недостатки, которых лишены покрытия, полученные на нестационарных методах. Среди них метод высокочастотного переменного тока (ВПТ) выгодно отличается от других чистотой осадка, возможностью регулировать в широких пределах толщину покрытия.

Цель работы состоит в прогнозировании химического, фазового состава и получении покрытий тройными сплавами Zn-Ni-Co, Co-Ni-Mn и Cr-Ni-Co с заданными функциональными свойствами.

Задачи исследования:

1. Теоретический прогноз заданного фазового состава электрохимических сплавов Zn-Ni-Co, Co-Ni-Mn и Ni-Co-Cr с помощью четырех критериев фазообразования.

2. Получение покрытий сплавами Zn-Ni, Zn-Ni-Co с максимальным содержанием γ-фазы, обладающих наноструктурой и не содержащих нанопор, микро- и макротрещин за счет подбора специальных органических добавок по адсорбционной теории; более экономичные и производительные.

3. Получение пленок Co-Ni-Mn, Co-Mn с заданным фазовым и химическим составом, наноструктурой и доменной структурой, отвечающей повышенным магнитным свойствам, а так же покрытий сплавом Co-Ni-Mn, соответствующих требованиям, предъявляемым к гетерогенным катализаторам реакции Фишера-Тропша, за счет использования метода высокочастотного переменного тока.

4. Разработка новых покрытий Zn-Ni, Zn-Ni-Co с коррозионно-защитными свойствами, превышающими антикоррозионные свойства кадмия.

5. Разработка покрытия Cr-Ni-Co с повышенной микротвердостью за счет получения наноструктуры.

Научная новизна:

Для тройных сплавов Zn-Ni-Co, Co-Ni-Mn, Cr-Ni-Co на основе четырех критериев фазообразования, в том числе уточненного размерного и полного, спрогнозирован фазовый состав и границы существования фаз.

На основании сопоставления расчетных значений работ зародышеобразования α -Ni и β -Ni показано, что при электроосаждении возможно в ряде случаев формирование в первых монослоях гексагональной фазы α -Ni, которая затем в результате фазового перехода α -Ni $\rightarrow \beta$ -Ni сменяется кубической фазой.

С помощью метода ВПТ получены покрытия сплавом Co-Ni-Mn, обладающие требуемыми магнитными свойствами.

Получены защитные покрытия сплавом Zn-Ni-Co, превосходящие по антикоррозионным свойствам Cd и отвечающие мировому уровню. Покрытия сплавом Cr-Ni-Co обладают аномально высокой микротвердостью.

Практическая значимость. Предложен теоретический метод, позволяющий прогнозировать соотношение ионов металлов в растворе, фазовый состав тройных электролитических сплавов, содержащих как фазы твердого раствора, непрерывные твердые растворы, так и интерметаллиды.

Обеспечены экономичные, энергосберегающие технологии за счет использования метода высокочастотного переменного тока, выбора поверхностно-активных добавок, обеспечивших заданную наноразмерную структуру покрытий (Co-Ni-Mn, Co-Mn), сокращено поисковое время, использована комнатная температура при осаждении (Zn-Ni-Co, Co-Ni-Mn, Cr-Ni-Co).

На защиту выносятся:

1. Теоретический прогноз соотношения ионов металлов в электролите осаждения, фазового состава сплавов Zn-Ni-Co, Co-Ni-Mn, Cr-Ni-Co и концентрационных границ существования интерметаллида Ni₅Zn₂₁ (γ -фаза в сплаве Zn-Ni-Co). Прогноз существования гексагональной фазы никеля (α -Ni) в электролитическом Ni и сплавах на его основе, а так же обоснование фазового перехода α -Ni $\rightarrow\beta$ -Ni в процессе роста осадка.

2. Получение покрытий сплавом Zn-Ni-Co с преимущественным содержанием γ-фазы и не содержащего нанопор и микротрещин. Разработка технологии получения нового защитно-коррозионного материала, превышающего по антикоррозионным свойствам Cd и лучшие покрытия фирм «Боинг» и «Дипсол Гам Вентюрс».

3. На основании использования метода высокочастотного переменного тока получение заданной структуры магнитных пленок сплава Co-Ni-Mn (α-Co>>α-Mn, регулируемое количество аморфной фазы Co(OH)₂, требуемые размерные эффекты) для гетерогенного катализатора.

4. Получение сплавов Ni-Co-Cr (Cr≤25%) и Cr-Ni-Co (Cr≈60%) из электролита одного состава за счет различных добавок и обладающих повышенной микротвердостью.

Достоверность обеспечивается применением комплекса физикохимических методов анализа с использованием современного высокотехнологичного оборудования с программным обеспечением.

Апробация работы. Основные положения и результаты диссертационной работы обсуждались на международных научно-практических конференциях: «Современные проблемы и пути их решения в науке, транспорте, производстве образовании» (Одесса, 2010г.); ІІ-ая международная Казахстанско-И Российская конференция по химии и химической технологии, посвященная 40летию КарГУ имени академика Е.А.Букетова (Караганда, 2012г.); Х-ая Международная конференция по мерзлотоведению «Ресурсы и риски регионов с вечной мерзлотой в меняющемся мире» (Салехард, 2012г.); на всероссийских: научн.-практ. конф. «Новые технологии - нефтегазовому региону», Тюмень -2010г., 2012г., 2013г.; грант победителя по программе «Участник молодежного научно-инновационного конкурса» («У.М.Н.И.К.», №11409p/17177 ОТ 31.01.2013г.), Тюмень, 2012г.; на региональных: науч-пр. конф. молодых ученых и специалистов «Инновации в проектировании, строительстве и эксплуатации нефтяных и газовых месторождений», Тюмень, 2012г.

Публикации. Основные результаты исследований представлены в 14 публикациях, включая 4 статьи в рецензируемых научных журналах.

Работа выполнена на оборудовании ТИ ТюмГНГУ и ЦКП «САПОиН».

Личный вклад автора заключается в участии совместно с руководителем постановке задач И выборе объектов исследования. Результаты, В представленные В работе, получены самим автором, либо при его непосредственном участии.

Структура и объем работы. Диссертация состоит из введения, шести глав, заключения, выводов, списка литературы (250 источников). Работа изложена на 173 страницах, включает 79 рисунков, 32 таблицы.

СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> обоснована актуальность исследования, сформулирована цель и задачи работы, научная новизна и приведены основные результаты, выносимые на защиту.

<u>Первая глава</u> является литобзором по теме диссертации. На основе опубликованных работ рассмотрено состояние ряда проблем, касающихся темы диссертации, дан критический анализ разных точек зрения на прогноз критериев фазообразования бинарных и тройных сплавов, нестационарных методов электролиза, наноструктуры, функциональных свойств тройных сплавов. Сделаны выводы по проведенному литобзору и сформулированы основные задачи исследования.

Вторая глава посвящена расчету фаз, определению границ химического содержания металла-растворителя заданных фаз в зависимости от соотношения ионов металлов в электролите.

5

Для расчета фазового состава воспользовались четырьмя критериями фазообразования, предложенными для бинарных сплавов А.И. Жихаревым, И.Г. Жихаревой, а для тройных – И.Г. Жихаревой, В.В. Шмидтом:

1) энтропийный фактор:

 $n_s = \frac{\Delta S'_{Me,1}}{\Delta S^T_{cn}}$, где ΔS^T_{Me} и ΔS^T_{cn} - изменение энтропии металла – растворителя и

сплава;

для сплава вводится поправка на энтропию смешения:

 $S_{cn}^{r} = S_{1}^{r} x_{1} + S_{2}^{r} x_{2} + S_{3}^{r} x_{3} - R[x_{1} \ln x_{1} + x_{2} \ln x_{2} + x_{3} \ln x_{3}]$ $S_{cn}^{\kappa} = S_{1}^{k} y_{1} + S_{2}^{k} y_{2} + S_{3}^{k} y_{3} - R[y_{1} \ln y_{1} + y_{2} \ln y_{2} + y_{3} \ln y_{3}]$

где x_i -мольные доли компонента в газовой фазе, а y_i -в кристаллической фазе, соответственно. n_s - характеризует степень различия химической связи;

2) размерный фактор: $n_v = [(d_1/d_{cn})^3 - 1] + [(V_1/V_{cn}) - 1]$, где d_1 и V_1 - диаметр и объем металла-растворителя; d_{cn} и V_{cn} - то же для сплава. n_v – характеризует величину возникающих искажений кристаллической решетки компонентов;

3) энергетический фактор n_e характеризует возможность перераспределения электронов внешних оболочек и изменение конфигурации электронных оболочек: $n_e=0,75(U_1-U_{cn})\cdot(1-n_v)$, где U_1 , U_{cn} - относительный потенциал ионизации металла и сплава;

4) полный объемный фактор: n_o=n_v+n_e, характеризует искажения электронных оболочек за счет различия электронной плотности вещества.

Главной задачей в случае сплава Zn-Ni-Co было получить покрытие с максимальным содержанием интерметаллида Ni₅Zn₂₁ (у-фаза). Для этого спрогнозирован состав электролита (соотношение сначала был ионов металлов), при котором ожидается максимальная протяженность границ уфазы. Самая широкая область существования у- фазы ожидается при Zn:Ni:Co = 0,6:0,3:0,1. Ο возможности соотношении существования интерметаллида свидетельствует постоянство энтропийного фактора ($n_s =$ const=0,8697) (табл.1). Последний фактор позволяет оценить границы преимущественного существования у-фазы со стороны цинка (Zn_{0.79-0.82}), что значительно уже, чем для бинарных сплавов.

Теоретический расчет фазового состава сплава Zn-Ni-Co ранее не проводился, но для бинарного сплава Zn-Ni И.Г. Жихарева, М.А. Шестаков рассчитали, а М.А. Шестаков экспериментально проверил область существования гомогенности γ-фазы. При этом оказалось, что опытная область интерметаллида несколько шире теоретической.

Для обоснования этого факта мы дополнительно в размерный фактор \mathbf{n}_d и \mathbf{n}_o ввели поправку на мольные доли смешения металлов в сплаве (табл.1).

 $\mathbf{n}_{d} = [(\mathbf{d}_{1}/\mathbf{d}_{cn})^{3} - 1 + y_{1}\ln(y_{1}) + y_{2}\ln(y_{2}) + y_{3}\ln(y_{3})] + [(\mathbf{V}_{1}/\mathbf{V}_{cn}) - 1],$

 $n_{o}=n_{d}+n_{e}=[(d_{1}/d_{cn})^{3}-1+y_{1}ln(y_{1})+y_{2}ln(y_{2})+y_{3}ln(y_{3})]+[(V_{1}/V_{cn})-1]+0,75(U_{1}-U_{cn})\cdot(1-n_{v}),$

NC-	NZ NZ					1
JNO	y _{Zn}	n _s	n _d	n _e	n _o	фаза
1	0,700	0,8747	-0,6465	0,6249	-0,0216	γ'*+α-Co (β-Co) **
2	0,790	0,8697	-0,4772	0,4034	-0,0737	γ>> α-Co (β-Co)
3	0,800	0,8697	-0,4678	0,3815	-0,0862	γ≫ α-Co (β-Co)
4	0,810	0,8696	-0,4576	0,3597	-0,0979	γ>> α-Co (β-Co)
5	0,820	0,8695	-0,4468	0,3380	-0,1088	γ>> α-Co (β-Co)
6	0,830	0,8697	-0,4410	0,3169	-0,1241	γ>> α-Co (β-Co)
7	0,840	0,8686	-0,4120	0,2939	-0,1181	γ>α-Co (β-Co)
8	0,850	0,8689	-0,4094	0,2736	-0,1358	γ>α-Co (β-Co)
9	0,860	0,8686	-0,3952	0,2524	-0,1427	γ+α-Co (β-Co)
10	0,870	0,8683	-0,3800	0,2315	-0,1485	γ+α-Co (β-Co)
11	0,880	0,8679	-0,3637	0,2108	-0,1529	γ+α-Co (β-Co)
12	0,890	0,8674	-0,3464	0,1904	-0,1560	γ+α-Co (β-Co)
13	0,900	0,8669	-0,3277	0,1703	-0,1575	γ+α-Co (β-Co)

Расчет фазового состава Zn-Ni-Co по критериям фазообразования

Построенные зависимости критериев фазообразования от мольной доли цинка в сплаве позволили определить (а) и уточнить (б) границы области существования γ-фазы (рис.1), и сделать вывод, что большее влияние на фазовый состав оказывает величина искажений кристаллической решетки компонентов, по сравнению с различием химической связи.

Рисунок 1. Расчетная зависимость n_s (a) и n_d (б) от мольной доли цинка в сплаве Zn-Ni-Co

Используя критерии фазообразования, было рассчитано соотношение ионов металлов в электролите для сплавов Cr-Ni-Co и Co-Ni-Mn. Согласно критериям n_s, n_d, n_e, n_o, определенному химическому составу могут отвечать двухфазный или трехфазный сплав. Для сплавов Co-Ni-Mn и Cr-Ni-Co, образующих твердые растворы, построены аппроксимирующие зависимости

^{*} Фаза γ' – интерметаллид NiZn₃

^{**} О наличии той или иной фазы Со в теоретических расчетах можно судить только при сравнении величин работ зародышеобразования A^{α} и A^{β} [2]

для n_s , n_e , n_d , n_v и приведены коэффициенты корреляции R^2 (рис.2).

Анализ литературных данных показывает, что Ni и сплавы Ni кристаллизуются в фазе $\beta - Ni$ (гранецентрированная кубическая решетка – ГЦК_р). Но согласно [3-5] известно, что, кроме фазы $\beta - Ni$, никель может образовывать метастабильную фазу $\alpha - Ni$ (гексагональная плотноупакованная решетка – ГПУр) (метод термической ионизации, метод лазерной абляции). При этом формирование ГПУ – структуры никеля трактуется как результат эффекта, фазового размерного a структурный переход $\beta - Ni \rightarrow \alpha - Ni$ рассматривается как полиморфный [3].

Рисунок 2. Зависимость критериев фазообразования от мольной доли Cr в сплаве Cr-Ni-Co:

- а) размерный: $v = -0.00071x^4 + 0.009x^3 0.030x^2 0.019x 0.803$:
- б) полный (общий): $y = 0,001x^4 0,021x^3 + 0,142x^2 0,482x 0,968;$
- в) энергетический: $y = 0,002x^4 0,030x^3 + 0,173x^2 0,463x 0,164$; г) энтропийный: $y = 0,00014x^3 0,002x^2 + 0,012x + 0,984$.

Встает вопрос: насколько вероятно формирование никеля В гексагональной фазе (α-Ni) для электрохимических покрытий и возможен ли переход $\alpha - Ni \rightarrow \beta - Ni$? В случае электрокристаллизации фазовый возможности появления фазы $\alpha - Ni$ можно судить на основании сравнения работ зародышеобразования для фаз $\alpha - Ni$ и $\beta - Ni$. Были рассмотрены три случая. При сопоставлении работ двумерного зародышеобразования для $\alpha - Ni$ и $\beta - Ni$ на собственной подложке в отсутствие примесей можно записать:

1. На собственной идеальной подложке (изотропной) [1]:

 $A_{k} = \frac{b\Psi_{1}^{2}}{z\overline{e_{0}}\eta}$ где b - коэффициент при Ψ_{1}^{2} , Ψ_{1} -энергия разрыва связи между первыми соседями; ze_{0} заряд электрона; η перенапряжение; $b_{Ni}^{\alpha} \neq b_{Ni}^{\beta}$, так как, хотя число первых соседей в этих фазах одинаковое, но числа вторых, третьих и четвертых соседей разные.

 $b^{\alpha} = 1.0015$; $b^{\beta} = 1.067$; $\Psi_1^{Ni} = 2.51 \cdot 10^{-20}$ Дж; $[1]_{z=1}$ (в лимитирующей стадии двумерного зародышеобразования участвует $1 \bar{e}$)

Зададим $\eta = 0,1$ В

$$A_{2}^{\alpha} = \frac{1.0015 \cdot (2.51 \cdot 10^{-20})^{2}}{1.6 \cdot 10^{-19} \cdot 0.1 \cdot 1} = 3.943 \cdot 10^{-20} \, \text{Дж}$$
$$A_{2}^{\beta} = \frac{1.067 \cdot (2.51 \cdot 10^{-20})^{2}}{1.6 \cdot 10^{-19} \cdot 0.1 \cdot 1} = 4.201 \cdot 10^{-20} \, \text{Дж}$$

Т.е. в идеальном случае преимущественной фазой является $\alpha - Ni$.

2. В реальных условиях подложка имеет дефекты, а раствор содержит различные примеси. В ЭТОМ случае расчет работы двумерного зародышеобразования ведется по формуле [1]:

$$A_{k} = \frac{b\Psi_{1}^{2}}{z\overline{e_{0}}\eta + K_{k}l_{1}\Psi_{1(0)}l_{2}C_{0} - l_{3}C_{hkl}\Psi_{1}} \Gamma_{d}e_{k}K_{k} - \kappa_{0}\phi\phi_{u}\mu_{u}e_{h} + \kappa_{0}F_{0}e_{h}F_{0}$$

 l_1, l_2, l_3 адсорбционные коэффициенты; $\Psi_{1(0)}$ энергия отрыва атома от подложки; C_0 коэффициент ослабления связи при $\Psi_{1(0)}$ [1].

Зададим $\eta = 0.2$ В

$$A_{2}^{\alpha} = \frac{1.0015 \cdot (2.51 \cdot 10^{-20})^{2}}{3.2 \cdot 10^{-20} + 0.95 \cdot 5.3388 \cdot 2.51 \cdot 10^{-20} - 1.1 \cdot 5.3388 \cdot 2.51 \cdot 10^{-20}} = 12.12 \cdot 10^{-20} \, \text{Дж}$$
$$A_{2}^{\beta} = \frac{1.067 \cdot (2.51 \cdot 10^{-20})^{2}}{3.2 \cdot 10^{-20} + 0.9 \cdot 5.3388 \cdot 2.51 \cdot 10^{-20} - 1 \cdot 5.3388 \cdot 2.51 \cdot 10^{-20}} = 3.6 \cdot 10^{-20} \, \text{Дж}$$

Согласно нашим расчетам, в этом случае на катоде формируются зародыши только ГЦК-фазы никеля ($\beta - Ni$)

3. Возможен случай, когда и на реальной подложке в реальном электролите в первых монослоях формируется фаза $\alpha - Ni$:

$$A_{2}^{\alpha} = \frac{1.0015 \cdot (2.51 \cdot 10^{-20})^{2}}{0.2 \cdot 1.6 \cdot 10^{-19} \cdot 1 + 0.95 \cdot 1.05 \cdot 5.07 \cdot 2.51 - 0.9 \cdot 2.51 \cdot 5.07 \cdot 10^{-20}} = 1.42 \cdot 10^{-20} \, \text{Дж}$$
$$A_{2}^{\beta} = \frac{1.067 \cdot (2.51 \cdot 10^{-20})^{2}}{0.2 \cdot 1.6 \cdot 10^{-19} \cdot 1 + 0.95 \cdot 5.3388 \cdot 2.51 - 5.3388 \cdot 0.97 \cdot 2.51 \cdot 10^{-20}} = 2.29 \cdot 10^{-20} \, \text{Дж}$$

На первых монослоях преобладает гексагональная плотноупакованная фаза, но в ходе роста осадка за счет адсорбционных процессов изменяются коэффициенты l_1, l_2, l_3 a соотношение работ ДЛЯ $\alpha - Ni \quad u \quad \beta - Ni$ в пользу *β* – Ni. Фаза ГЦК никеля трансформируется становится преимущественной т.е. фазовый переход $\alpha - Ni \rightarrow \beta - Ni$ происходит при электрокристаллизации за счет хемосорбции и физической адсорбции. Аналогичные процессы возможны и в случае осаждения сплавов на основе никеля.

<u>Третья глава</u> посвящена краткому описанию методик исследования:

1. Получение электроосажденных сплавов стационарным методом (СМ) (Zn-Ni, Co-Mn, Zn-Ni-Co, Co-Ni-Mn и Cr-Ni-Co) и нестационарным (Co-Mn, Co-Ni-Mn).

2. Определение химического состава сплавов: фотоэлектроколориметрический метод. Погрешность измерений 5-10%. Дополнительно о химическом содержании сплава Zn-Ni-Co (γ-фаза) судили на основании карт базы данных PCPDFWIN 2007 (№ 00-006-0653).

3. Растровые электронные микроскопы «Philips SEM 515»; JEOL JSM-6510LV

с рентгеноспектральными анализаторами использовались для построения спектра и карт распределения элементов, исследования микроструктуры и химического состава подповерхностных слоев. Погрешность в определении содержания элементов +0,2вес%.

4. Атомно-силовая микроскопия (ACM). Для исследования микрорельефа и локальных свойств поверхности сплавов использовалась зондовая нанолаборатория «Ntegra», управляемая посредством программы Nova. Погрешность позиционирования сканера составляет не более 1 нм.

5. Рентгенофазовый анализ (РФА) проводили на дифрактометрах ДРОН – 3,6,7 (Со-Кα- излучение, Ni- фильтр). Параметры элементарных ячеек кубических решеток определяли с точностью ± (0,0001 – 0,0002) нм, а для гексагональных сингоний с точностью ± 0,002 нм при помощи комплекса РФА PDWin 4.0.

6. Микроструктурный анализ (MCA) для характеристики морфологии поверхности покрытия во коррозии. Использовались ЛО И время металлографический микроскоп METAM PB-22, цифровой адаптер, фотоаппарат Nikon и компьютер Pentium. Погрешность измерений 5-7%.

7. Определение физико-химических и механических свойств покрытий: a) определение микротвердости с помощью микротвердомера ПТМ-3М. Нагрузка на индентор 20-50 г. Погрешность измерений 5-7%; б) определение магнитных свойств на вибрационном магнитометре. Погрешность измерений 3-5%; в) скорость коррозии: весовой и глубинный показатели. Погрешность измерений 5-10%.

<u>В четвертой главе</u> приведены результаты исследования и оптимизация характеристик процесса осаждения электролитических сплавов Zn-Ni-Co, Co-Ni-Mn, Cr-Ni-Co.

Для сплава Zn-Ni, Zn-Ni-Co требовалась толщина покрытия порядка 15-20 мкм, равномерность поверхности, близкая к 100% и относительно высокая скорость осаждения. Для этого в электролит осаждения вводились специальные органические добавки, подбор которых осуществлялся с помощью адсорбционной теории Нечаева – Куприна. Суть которой: потенциал ионизации (ПИ) добавки должен быть близок к ПИ соосаждаемых металлов; добавка должна быть бифункциональна.

Предварительные испытания показали, что наилучшие характеристики процесса осаждения (толщина (б) и равномерность (l) покрытия, скорость

осаждения (V₁, V₂), адгезия) для сплава Zn-Ni получены в присутствии моноэтаноламина (МЭА) (табл.2). Однако для тройного сплава эта добавка оказалась менее действенной, чем аминосульфокислота (о-, п-ACK). Объяснить этот факт можно с помощью механизма действия добавок.

Покрытие тройным сплавом превосходит Zn-Ni по требуемой толщине, скорости осаждения, а сам процесс протекает при комнатной температуре. Осадок Zn-Ni характеризуется самой высокой равномерностью (табл.2).

Таблица 2

Сплав / добавка	№ об.	t, ℃	і _к , А/дм ²	б _{осад.} мкм	V ₁ , г/м ^{2.} час	V ₂ , мкм/час	l, %	Адгезия / число перегибов	Внешний вид	
Zn-Ni Б/добавки	1	20	2,5	2,6	71,3	7,8	77	плохая / <12	серый цвет	
Zn-Ni	2	40	7,5	5	153,4	15,0	95	отличная / >50	темно-	
МЭА	3	80	7,5	14	112,8	42,0	97	отличная / >50	сереористы й цвет	
Zn-Ni ДЭА	4	80	7,5	4	129,0	12,0	71	средняя / 12-22	темно- серебристы	
Zn-Ni п-АСК	5	40	7,5	12	101,8	30,0	94	хорошая / 25-45	й цвет, с дендритам и	
Zn-Ni-Co Б/добавки	6	20	5	1,3	97,4	3,9	36	плохая / <12	серый цвет	
Zn-Ni-Co o-ACK	7	20	11	2,8	101,5	38,4	79	хорошая / 25-45	темно- серебристый цвет	
Zn-Ni-Co п-ACK	8	20	8	19,1	268,1	57,3	95	отличная / >50	серебристый цвет	
Zn-Ni-Co п-ACK	9	80	20	12	340,4	36,0	84	хорошая / 25-45	темно- серебристый цвет с дендритами	

Сравнительные характеристики процесса осаждения для сплавов Zn-Ni и Zn-Ni-Co

Согласно схеме образования комплексов ${\rm Zn}^{2+}$ с (п-ACK) для сплава Zn-Ni-Co:

п-АСК образует линейные солеобразные структуры, что способствует дополнительному торможению ионов Zn^{2+} (эффект бензольного кольца).

Экспериментальные зависимости (рис.3) подтверждают вывод сделанный ранее.

Рисунок 3. Равномерность покрытий сплавами Zn-Ni и Zn-Ni-Co с добавлением органических веществ:

a) Сплав Zn-Ni с добавками: 1-без добавки; 2-МЭА; 3-ДЭА; 4-п-АСК; б) Сплав Zn Ni Co с добавками: 1 без добавки; 2-о АСК:3 д АСК

б) Сплав Zn-Ni-Co с добавками: 1-без добавки; 2-о-АСК;3-п-АСК.

Сплавы Co-Ni-Mn и Co-Mn возможно использовать как магнитные материалы и как катализаторы гетерогенного катализа. При стационарном методе (CM) электролиза, согласно литературным данным, для сплавов с присутствием марганца всегда наблюдается большое количество включений гидроксидов металлов, резко ухудшающих качество покрытий. Чтобы получить регулируемое количество аморфной фазы, был использован метод ВПТ и изомерные добавки аминосульфокислоты (о-ACK и п-ACK).

Сравнение покрытий Co-Ni-Mn, полученных в присутствии изомерных добавок, показало преимущество о-ACK (механизм, рис.4):

Рисунок 4. Зависимость равномерности (а) и толщины (б) сплава Co-Ni-Mn от частоты (ВПТ)

Сравнение характеристик процесса осаждения для метода ВПТ и СМ показало явное преимущество нестационарного режима электролиза (табл.3): процесс более производительный (время электролиза на порядок ниже), экономичный (комнатная температура, отсутствие нагревательных приборов, концентрация электролита ниже в 10 раз).

Сравнительные характеристик	и процесса осажден	ния спл	авов Со-Ni-Мп	и Со-Мп
с использованием стациона	рного и нестациона	рного ј	режимов элект	оолиза

N⁰	Состав электролита	т, мин	g=i _a /i _k	і _к , А/дм ²	t, ℃	U, B	f, кГц	б, мкм	l, %	V ₁ , мкм/ ч	Адгезия/ число перегибов
			Стан	ионарнь	лй реж	ким э.	пектрол	тиза			
1	Co-Ni-Mn + п-ACK	20	-	10	80	-	-	0,7	96	2,10	хорошая/ 35-40
2	Co-Mn + o-ACK	35	-	40	40	-	-	1,5	94	2,57	средняя/ 25-30
Нестационарный режим электролиза											
3 4	Co-Ni-Mn + o-ACK	3	1:5	-	20 20	2 3	8,3	1,8 2,0	99 98	36,0 40,0	отличная/ >50
5	Co-Mn+ o-ACK	4	1:5	-	20	4	8,3	1,0	97	15,0	отличная/ >50
6	Co-Mn+ o-ACK	2	1:4	-	20	4	40	7,5	85	225,0	хорошая/ 35-45
	E	Все кон	центраци	ии состан	вляют	0,1 0	т элект	ролита	при (CM	

Сопоставление лучшего двойного и тройного сплавов по методу ВПТ показало, что хотя сплав Со-Мп обладает высокими характеристиками процесса осаждения, но он явно уступает тройному сплаву по толщине (требовалось $\delta \approx 2$ мкм), времени и скорости осаждения, равномерности.

Сплавы Cr-Ni-Co бывают низкохромистые (до 25%) и высокохромистые ($\approx 60\%$). Нами показано, что они могут быть получены из электролита одинакового состава, но с разными добавками (табл.4). Основными факторами, определяющими состав хромовых сплавов, Салли, Шлюгер считают наличие дисперсных гидроксидных или оксидных включений хрома. Задача решалась с помощью специальных органических добавок: мочевина для низкохромистых и Н-кислота для высокохромистых. В первом случае добавки должны преимущественно тормозить разряд ионов Cr³⁺, а в последнем Ni²⁺

Схематически взаимодействие Ni⁺² с Н-кислотой можно представить следующим образом:

Самое лучшее покрытие получается в присутствии мочевины, но с единственным недостатком – покрытия тонкие.

Оптимальными характеристиками электросаждения обладают покрытия, полученные в присутствии Н-кислоты. Они

осаждаются при комнатной температуре с высокой скоростью, достаточной равномерностью и высокой адгезией.

Влияние условии электролиза на характеристики процесса осажления сплава (т-Ni-I	7
	¹ O
- Блилине условии электролиза на характеристики процесса осаждения сплава ст ти	$\mathcal{I}_{\mathcal{O}}$

Nº	Добавка	і _к , А/дм ²	t, ⁰C	т, осадка	V ₁ , г/м ² ∙час.	б, мкм	l, %	V2, мкм/ч	Адгезия/ число перегибов	Примечание, внешний вид
1	Без добавки	4	20	0,0066	50	1,8	44	5,45	плохая / <12	Темного цвета, много включений
2	+(NH ₂) ₂ CO	3	20	0,0094	71,21	7,4	88	22,42	хорошая/ 25-45	Блестящие, ровные
3	+ Ц инелота	8	20	0,0532	403,03	18,2	90	55,15	отличная/ >50	Ровные,
4	+ н - кислота	2	40	0,0821	621,97	14,0	80	42,2	хорошая/ 25-45	металлические
5 6	+ п-АСК	6 6	60 80	0,0246 0,0557	186,36 421,97	5,0 3,8	81 77	15,15 11,51	отличная/ >50	Металлические, ровные, темного цвета

Т.о. для всех исследуемых сплавов (Zn-Ni-Co, Co-Ni-Mn и Cr-Ni-Co) были получены оптимальные характеристики процесса осаждения в соответствии с требуемыми функциональными свойствами.

<u>В пятой главе</u> целью являлось получение покрытий заданного химического и фазового состава, и обладающих наноструктурой.

Для покрытий сплавом Zn-Ni-Co требовалось получить осадки с максимальной протяженностью границ содержания у-фазы, обладающие содержанием наноструктурой, кобальта. И минимальным Согласно проведенному раннее (глава 2) расчету фазового состава тройного сплава, следовало ожидать существование у-фазы при содержании цинка в сплаве 79-83 вес % (табл.5). Экспериментально определенный фазовый состав согласуется с расчетными данными, погрешность в определении границ существования уфазы сплава Zn-Ni-Co находилась в пределах ±2%, относительная погрешность отклонения экспериментальных критериев фазообразования от теоретических составило в среднем не более ±8%. О существовании промежуточных соединений судили на основании карт базы данных PCPDFWIN 2007. При в γ-фазе ≤79 % на дифрактограмме появляются содержании цинка дополнительные рефлексы β-Со (рис.5)

Фаза Ni_5Zn_{21} со структурой CsCl имеет упорядоченную структуру типа I-43m. γ - фаза имеет примитивную кубическую решетку с 52 атомами на элементарную ячейку.

Заместители ПАВ для сплавов Zn-Ni и Zn-Ni-Co существенно влияют как на фазовый состав, так и на другие структурные характеристики.

Период кристаллической решетки как для бинарного, так и тройного сплава, обладающих интерметаллидом Ni_5Zn_{21} , отвечающими формульному составу электронного соединения, совпадает с параметром решетки литого сплава Zn-Ni (табл.6).

Существенным недостатком сплава Zn-Ni является наличие щелевидных нанопор и макротрещин. Методом атомно-силовой микроскопии (рис.6) показано, что лучшим покрытием является сплав Zn-Ni-Co (п-ACK). Для сплавов Zn-Ni структура менее совершенная.

Результаты микрозондового метода дополняют и подтверждают эти данные.

Таблица 5

Nº	Добавка	Химический состав, %			Фазовы	ій состав	Отклонен критериен фазообраз теор. гран	Содержа- ние цинка в ү ^э -фазе/ ү ^т -фазе,% [*]	
		Zn	Ni	Co	Расч.	Эксп.	Отн. погреш- ность, %	Точность измерения, %	
1	п-АСК	75,0	17,0	8,0	γ+α-Co	<i>γ>>α-Co</i>	±5,06	98,193	81,5/83
2	п-АСК	78,0	18,0	4,0	γ+α-Co	<i>γ>>α-Co</i>	±1,27	97,892	81,25/83
3	п-АСК	77,0	14,0	9,0	γ+α-Co	<i>γ>>α-Co</i>	±2,53	97,468	84,62/83
4	о-АСК	74,0	21,0	5,0	γ+α- Co+β-Co	γ>>α- Co+β-Co	±6,33	98,595	77,89/79
5	o-ACK	73,7	19,3	7,0	γ+α- Co+β-Co	γ>>α- Co+β-Co	±7,72	100,316	79,25/79

Химический и фазовый состав сплавов Zn-Ni и Zn-Ni-Co

Рисунок 5. Дифрактограмма сплава Zn-Ni-Co (в присутствии п-АСК)

а) Zn-Ni-Co (п-ACK) - 2 мкм – удлиненные кристаллы внизу рисунка – фаза α-Co; скопления мелких темных частиц – интерметаллид Ni₅Zn₂₁; белые граничные образования –NiO; б) Топология Zn-Ni-Co (п-ACK). Упорядоченные усеченные треугольники-кристаллы γ-фазы размером 174 нм; в) Zn-Ni (ДЭА) - 18 мкм – многочисленные параллельные мелкие каналы – щелевидные нанопоры; темная диагональная черта с белыми краями – глубокие трещины.

^{*} ү^э, ү^т- экспериментально и теоретически определенная ү-фаза

Влияние положения заместителей на параметры кристаллической решетки интерметаллида Ni₅Zn₂₁ для сплавов цинка

Сплав	Добавка	і _к , А/дм ²	Тип решетки	Паран кристалл решетки	метр іической і ү-фазы,	Фаза	Zn в сплаве,	
				а, нм	с, нм		Macc 70	
Zn-Ni	Б/добавки	2,5	CsCl +η-Zn	0,8913	-	η-Zn+γ следы	98	
Zn-Ni	ДЭА	2,5	CsCl+η-Zn	0,8916	-	η-Zn+γ	91	
Zn-Ni	МЭА	7,5	CsCl	0,8920	-	γ	82	
Zn-Ni	п-АСК	7,5	CsCl+η-Zn	0,8916	-	η-Zn+γ	83	
Zn Ni Co	п-АСК	8	CsCl+ ГПУр	0,8920		- γ+α-Co	75	
ZII-INI-CO				0,2524	0,4115			
Zn Ni Co		20	CsCl+	0,8926		γ+	70	
ZII-INI-CO	II-ACK	20	ГПУр	0,2524	0,4115	α-Co	/8	
Zn-Ni-Co			CsCl+	0,8922		γ+		
	o-ACK	8	ГПУр+	0,2531	0,4112	α-Co +β-Co	73,7	
			ГЦКр	0,3567		F		

Для сплава Co-Ni-Mn требовалось получить покрытие с максимальным содержанием кобальта, минимальным Mn и оптимальным содержанием аморфной фазы Co(OH)₂. Экспериментальный фазовый состав совпадает с расчетным (табл.7, рис.7), при методе ВПТ в осадке присутствует фаза α -Co, α -Mn, Co(OH)₂, а при CM появляется дополнительная фаза β -Co.

Таблица 7

№ Добавка, (условия Химический Расч. Эксп. Отн. погрешно эксп. критерие электролиза) состав, % фаза фаза эксп. критерие Со Ni Mn к расчетным, ±	ость 28 Примечание ия новые +% эксп. фазы
(условия электролиза) состав, % фаза фаза эксп. критерие фазообразован к расчетным, ±	ев Примечание ия новые +% эксп. фазы
электролиза) Со Ni Mn чиси фазообразован к расчетным, ±	ия новые =% эксп. фазы
Со Ni Mn фазообразован к расчетным, ±	ня новые ⊧% эксп. фазы
Со Ni Mn Красчетным, -	Е% эксп. фазы
Co Ni Mn	
Π -ACK. β -Co	
$1 \exists \qquad 80^{\circ}C 616 377 07 \beta^{-Co} \alpha^{-Co} +211 \div +52$	$C_0(OH)_2$
$1 = \frac{1}{2}$ $0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.0000000 = 0.0000000 = 0.00000000$	
$9 - 10^{\circ}$ 10° 10° 10° 10° 10° 10°	
$2 = \frac{1}{2} = $	$6 Co(OH)_2$
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	、 <i>,</i> ,
2 $\frac{1}{2}$	
$\begin{bmatrix} 3 \\ \end{bmatrix} = \begin{bmatrix} 20 \\ \end{bmatrix} = \begin{bmatrix} 20 \\ 07,1 \\ 30,8 \\ 2,1 \\ 0-Mn \\ 0$	$CO(OH)_2$
\square	
$ A = \frac{H}{S} = \frac{1}{20} \circ C = \frac{1}{760} = \frac{1}{214} = \frac{1}{26} = \frac{\alpha - Co^{3/3}}{\alpha - Co^{3/3}} = \frac{1}{1641} = \frac{1}{172} = \frac{1}{1641} = \frac{1}{1641} = \frac{1}{172} = \frac{1}{1641} = \frac{1}$	$C_{\alpha}(OII)$
$ 4 5 \hat{\alpha} 20 \hat{\beta} 20 \hat{\beta} 21,4 2,0 \alpha-Mn \alpha-Mn \pm 0,41 \hat{\beta} \pm 7,22$	$5 CO(OH)_2$
$ \square \square \square \square \square \square Co(OH)_2 $	

Фазовый состав тройных электроосажденных сплавов Co-Ni-Mn

Относительная погрешность экспериментальных данных к расчетным не превышает ±7,25.

Рисунок 7. Дифрактограмма сплава Co-Ni-Mn: a) o-ACK, t=40⁰C, i_k=25 A/дм² (CM); б) o-ACK, t=20⁰C, g=1:5, f=8,3 кГц (ВПТ)

Результаты ACM (рис.8а,б) и электронной микроскопии на просвет (рис.8в) сплава Co-Ni-Mn помогают понять механизм формирования наноструктуры.

Образовавшиеся наночастицы фазы α-Со (рис.8а) сохраняют свою дисперсность за счет гидроксидов кобальта Co(OH)₂ - белые кольца (рис.8б) и удлиненные пластины (рис.8в).

Рисунок 8. Фазовый контраст поверхностной фазы α-Co(a), нанокристаллическая структура (б) электронная микроскопия на просвет (в) сплава Co-Ni-Mn

Особенностью сплава Cr-Ni-Co является способность образовывать при электроосаждении из электролита одного и того же состава, изменяя только добавку, как низкохромистые сплавы (Ni-Co-Cr), так и высокохромистые (Cr-Ni-Co). Во всех случаях образуются твердые растворы, но фазовый состав высокохромистых сплавов более сложный (присутствует три фазы, вместо двух фаз в низкохромистых) (рис.9).

Как следует из табл.8, экспериментальный фазовый состав сплава Ni-Co-Cr совпадает с прогнозным составом, исключение составляет дополнительная фаза CrO₃ и аморфно-метастабильная система (AMC).

Таблица 8

№	Сплав	Содержание				Отн.	Примечание:	
		M	еталла	B			погрешность	новые эксп.
		сп	лаве,	%			эксп. критериев	фазы
			1				фазообразования	
		Ni	Со	Cr	Расч. фаза	Эксп. фаза	к расчетным	
1	Ni- Co-Cr	50,0	37,5	12,5	β-Ni+α-Co	β-Ni+α-Co	$\pm 1,4 \div \pm 3,5$	
		37,5	43,5	19,0	α -Co + β -Co	α -Co + β -Co		
		32,0	48,5	19,5	α -Co + β -Co	α -Co + β -Co		
2	Ni-Co-Cr	42,1	40,9	17,0	β -Ni + β -Co	β -Ni + β -Co	$\pm 1,25 \div \pm 3,75$	AMC
		58,7	16,3	25,0	β -Ni + β -Co	β -Ni + β -Co+		
						AMC		
3	Cr-Ni-Co	17,7	19,1	63,2	α -Cr+ β -	α -Cr+ β -Co+ β -	$\pm 1,5 \div \pm 4,5$	CrO ₃
					Co+β-Ni	Ni+CrO ₃		
4	Cr-Ni-Co	31,4	23,6	45,0	α -Cr+ α -Co	α-Cr+α -	$\pm 1,45 \div \pm 3,9$	CrO ₃
						Co+CrO ₃		
5	Cr-Ni-Co	32,4	15,4	52,2	$\alpha - Cr + \beta - Co$	$\overline{\alpha}$ -Cr+ β -	$\pm 1,33 \div \pm 4,73$	CrO ₃
						Co+CrO ₃		
					$Cr^{2+:}Ni^{2+:}Co$	²⁺ =0,47:0,41:0,12	2	

Фазовый состав тройных электроосажденных сплавов Ni-Co-Cr и Cr-Ni-Co

На диаграмме поперечного среза шлифа и электрономикроскопическом снимке наблюдается необычная закономерность: участки сплава, границы которых шириной 0,7 - 1мкм, обогащены хромом на 4 - 8% больше по сравнению с их центральными областями. Возможны зоны, обогащенные [Cr(OH)₂(H₂O)·2H₂O], служат матрицей для наночастиц сплава Ni-Co-Cr с размерами 50 нм. Высказано предположение, что формированию способствовали ультрадисперсных частиц сплава Ni-Co-Cr пленки гидроксидов хрома, вызывающих торможение процесса электрокристаллизации.

<u>В шестой главе</u> рассматриваются функциональные свойства исследуемых покрытий.

Основное требование к покрытиям сплавом Zn-Ni-Co-высокие антикоррозионные свойства в морской воде. Коррозионный процесс можно представить схемой (звездочкой показаны метастабильные фазы):

1)
$$Ni_5Zn_{21} \xrightarrow{-Zn^{2+}} Ni_5Zn_{21}^* \xrightarrow{-Zn^{2+}} 2) \xrightarrow{NiZn_3} \xrightarrow{-Zn^{2+}} 3) \xrightarrow{-Zn^{2+}} 4)$$

 $NiZn \xrightarrow{-Zn^{2+}} Ni^2n \xrightarrow{-Zn^{2+}} 4)$

2)
$$Co - Zn \xrightarrow{-Zn^{2+}} Co - Zn^* \xrightarrow{-Zn^{2+}} Co^{2+} + Zn^{2+}$$

Механизм (1), для Ni₅Zn₂₁ аналогичен схеме для сплава Zn-Ni, рассмотренной М.А. Шестаковым.

Анализ факторов, влияющих на коррозионные характеристики сплавов Zn-Ni-Co, показал, что главную роль играют структурные факторы – фазовый

N⁰	Покрытие	V ₁ , г/м ² ч, через 750 часов	V ₂ , мкм, через 750 часов	Микротвёр- дость, Нµ, МПа	l, %, через 750 часов	Фаза
1	Сталь без покрытия [Мельников П.С.]	0,651	80,2	-	-	-
2	Zn [Мельников П.С.]	0,036	5	85 - 120	-	η-Zn
3	Cd [Мельников П.С.]	0,0014	2,1	250 - 590	-	-
4	Ni [Мельников П.С.]	-	3,9	160-550	-	β-Ni
6	Zn –Ni (п-ACK) [Шестаков М.А.]	0,0015	2,4	401-482,4	80-83,5	ү-фаза
8	Zn-Ni-Co (п-ACK)	0,0010	1,65	697	95	γ-фаза≫>β-Со
9	Zn-Ni (MЭA)	0,0008	1,3	639	97	ү-фаза

Стойкость покрытий в морской воде

Покрытие Zn-Ni-Co обладает не только высокими антикоррозионными свойствами в морской воде, но и в масляной среде. В то время, как кадмий и бинарный сплав Zn-Ni, не стойки в этой среде. Получены наноструктурные, беспористые с максимальным содержанием γ-фазы покрытия сплавами Zn-Ni, Zn-Ni-Co, отвечающие мировому уровню и превышающие по антикоррозионным свойствам Cd.

Покрытия сплавом Co-Mn обладают двумя ценными функциональными свойствами: магнитными и каталитическими. Недостатком этих покрытий является большое количество аморфной фазы Co(OH)₂ и неоднородность покрытия по размеру кристаллов.

В общем случае увеличение содержания кобальта в сплаве приводит к росту коэрцитивной силы, но при появлении большого количества Co(OH)₂ главную роль начинает играть аморфная фаза, способствующая понижению H_c в 2,5 раза (табл.10).

Таблица 10

N⁰	Сплав / добавка	Н _µ , МПа	Н _{с,} А/м	d _{Co} , нм	Фаза
1	Co-Ni-Mn o-ACK (ВПТ)	555	1050,0	12	α -Co >> α -Mn, Co(OH) ₂
2	Co-Ni-Mn п-ACK (CT)	395	1930,8	27	а-Со, β -Со Со(ОН) ₂ много
3	Co-Mn o-ACK (CT)	308	1810,4	30	α-Со, α-Мп, Со(ОН) ₂ много
4	Co–Mn o-ACK (ВПТ)	447	1230,0	15	α -Co >>Co(OH) ₂

Физико-механические свойства Co-Mn, Co-Ni-Mn

Можно сделать вывод, что основной вклад в магнитный контраст вносят кристаллиты α-Мп и α-Со, а аморфная фаза способствует понижению коэрцитивной силы электролитического покрытия Co-Ni-Mn (ВПТ). Поликристаллы сплава Co-Ni-Mn состоят из отдельных монокристаллов α-Co, обладающих высокой доменной структурой.

С другой стороны, по своим структурным характеристикам покрытие Со-Ni-Mn полностью отвечает и требованиям, предъявляемым к катализаторам реакции синтеза Фишера-Тропша: имеется фаза α-Со и небольшое содержание свободной фазы α-Mn; получено оптимальное количество аморфной фазы Co(OH)₂ обеспечивающей заданные размерные эффекты и сохраняющие наноструктурные размеры в процессе роста покрытия α-Mn (табл.10).

Сплав Ni-Co-Cr обладает аномально высокой микротвердостью (H_µ=985 MПа) за счет наличия аморфной фазы Cr(OH)₃(H₂O)·2H₂O, что возможно связано с наличием полидвойниковых частиц (табл.11).

Таблица 11

Сплав /	і _к , А/дм ²	t, ⁰C	Состав сплава, %			.	
добавка			Ni	Со	Cr	Фазовыи состав	H_{μ} ,MIIIa
Cr-Ni-Co / п-ACK	11	20	44,1	30	25,9	β-Νί+β-Co	520
Cr-Ni-Co / п-ACK	6	40	23,7	22,4	53,9	α -Cr+β-Co+β-Ni	480
Cr-Ni-Co / п-АСК	6	80	55,3	18,8	25,9	β-Νί+β-Co	410
Cr-Ni-Co / Мочевина	6	20	58,7	16,3	25,0	α-Cr+CrO ₃	985
Ni-Co-Cr / Н-кислота	6	20	22,5	18,9	58,6	α -Cr+ β-Ni +NiO	690

Влияние содержания компонентов в сплаве Ni-Co-Cr и Cr-Ni-Co на механические свойства

Как показал анализ результатов исследований, на величину микротвердости, в первую очередь, оказывает влияние фазовый состав и наличие дополнительных фаз: АМС в случае сплавов Ni-Co-Cr и фазы CrO₃ для сплавов Cr-Ni-Co.

По совокупности исследования структурных исследований и микротвердости можно рекомендовать сплав Ni-Co-Cr для использования в радиоэлектронике, а сплав Cr-Ni-Co для использования в микроэлектронике для резисторных и тензорезистивных элементов.

Выводы

1. На основании четырех критериев фазообразования, в том числе уточненного нами размерного и полного критериев, для тройных сплавов спрогнозировано соотношение ионов металлов в растворе, фазовый состав и границы существования фаз, как интерметаллидов (Zn-Ni-Co), фаз твердого раствора (Co-Ni-Mn), так и непрерывных твердых растворов (Cr-Ni-Co). На основании сопоставления расчетных значений работ нуклеации α-Ni и β-Ni показано, что при электроосаждении никеля

возможно в ряде случаев формирование гексагональной фазы α-Ni, которая сменяется в результате фазового перехода кубической фазой β-Ni.

2. Установлено, что применение адсорбционной теории на основе близости потенциалов ионизации (ПИ) добавок к ПИ соосаждаемых металлов, использование би- и трифункциональных добавок позволяет направленно формировать фазовый состав сплавов Zn-Ni-Co (γ -фаза>> α -Co); Co-Ni-Mn (α -Co>> α -Mn, Co(OH)₂); Cr-Ni-Co (α -Cr, β -Ni, α -Co), а так же поверхностную наноструктуру и размерные эффекты (Co-Ni-Mn). Все покрытия тройными сплавами экономичнее, производительнее и качественнее бинарных сплавов.

3. Показано, что использование метода высокочастотного переменного тока при осаждении сплава Co-Ni-Mn позволяет получать покрытия с заданным фазовым составом (α-Co>>α-Mn), наноструктурой, требуемыми размерными эффектами за счет регулируемого содержания аморфной фазы Co(OH)₂.

4. На основании полученных функциональных свойств тройных сплавов рекомендованы к использованию покрытия Zn-Ni-Co для защиты от солевой коррозии нефтедобывающего оборудования и в автомобильных двигателях; сплав Co-Ni-Mn – в качестве катализатора реакции Фишера-Тропша; сплав Cr-Ni-Co в качестве конструкционного материала для ответственных деталей и в радиоэлектронике, а так же в микроэлектронике для резисторных и тензорезистивных элементов.

Список цитируемой литературы

1. Жихарев А.И. Ориентированная электрокристаллизация / А.И. Жихарев, И.Г. Жихарева // Тюмень: ТюмГНГУ, -1994. - 290 с.

2. Жихарев А.И. К вопросу формирования структуры электролитического кобальта / А.И. Жихарев, И.Г. Жихарева // Электрохимия. - 1994. - Т.30. - №8. - С. 977 - 981.

3. Багмут А.Г. Структура и магнитное состояние пленок, осажденных лазерной абляцией составных мишеней никеля и палладия / А.Г. Багмут, И.Г. Шипкова, В.А. Жучков // Журнал технической физики. - 2011. - Т.81. - вып.4. - С.102 - 110.

4. Yoon Tae Jeon. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles / Yoon Tae Jeon, Je Yong Moon, Gang Ho Lee, Jeunghee Park, Yongmin Chang // The journal of physical chemistry. B 2006. -110(3). - P.1187 - 91.

5. Gong J. Structural and magnetic properties of hcp and fcc Ni nanoparticles / J. Gong, L.L. Wang, Y. Liu, J.H. Yang // J. Alloys and Compounds. - 2008. - V.457. - P.6 - 9.

Основные публикации по теме диссертации:

Статьи, опубликованные в рецензируемых научных журналах

1. Жихарева И.Г. Поверхностная структура магнитных сплавов кобальт - марганец / И.Г. Жихарева, В.В. Шмидт, Ю.В. Пахаруков, А.А. Ракашов // Вестник Тюменского государственного университета. – 2012. – №5. - С.39 - 43.

2. Шмидт В.В. Влияние адсорбции на равновесное образование граней при электрокристаллизации смешанных кристаллов металлов / В.В. Шмидт, И.Г. Жихарева, Ю.В. Пахаруков, А.А. Ракашов // Вестник Тюменского государственного университета. – 2012. – №5. - С.50 - 53.

3. Жихарева И.Г. Повышение антикоррозионных свойств нефтепромыслового оборудования с помощью покрытий Zn-Ni / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт, В.П. Щипанов // Известия Высших учебных заведений. Нефть и газ. – 2013. - №3. - С.82 - 88.

4. Жихарева И.Г. Прогнозирование антикоррозионных свойств покрытий сплавами на основе цинка / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт // Известия Высших учебных заведений. Нефть и газ. - 2013. - №4. - С. 111 - 115.

Другие научные публикации

5. Жихарева И.Г. Роль наноструктуры в упрочнении покрытий Ni-Co-Cr / И.Г. Жихарева, В.В. Шмидт, А.А. Ракашов // «Современные проблемы и пути их решения в науке, транспорте, производстве и образовании». г. Одесса, Украина, 2010. - Т.30 - С.49 - 50.

6. Жихарева И.Г. Некоторые аспекты стационарной электрохимической нуклеации смешанных кристаллов / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт // Межд. науч.-техн. конф. Нефть и газ Западной Сибири. – Тюмень. – 2011. - Т.З - С.159 - 161.

7. Zhikhareva I.G. Improvement of Protective Corrosion Resistance of Oilfield Equipment in the Northern Environment Using Zn-Ni Electrolytic Coatings / I.G. Zhikhareva, A.A. Rakashov, V.V. Shmidt // Proceedings of the Tenth International Conference on Permafrost : «Resources and Risks of Permafrost Areas in a Changing World». Salekhard, Yamal-Nenets Autonomous District, Russia June 25 – 29, - 2012. - Vol.4/2. - P.673.

8. Жихарева И.Г. Структурные характеристики сплава Zn-Ni с повышенными антикоррозионными свойствами / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт // Материалы II Международной Казахстанско-Российской конференции по химии и химической технологии. – Том 1.– Февраль - март. – Караганда: Изд-во: КарГУ, - 2012. - С.131 - 132.

9. Жихарева И.Г. Упрочнение покрытий сплавом Ni-Co-Cr за счет нанокристаллической структуры / И.Г. Жихарева, А.А. Ракашов, Н.И. Дубенский, В.В. Шмидт // Материалы научно-практ. конф. Новые технологии – нефтегазовому региону. – Тюмень. – 2010. - Т.2 - С.25 - 27.

10. Жихарева И.Г. Вероятность совместного двумерного и трехмерного зародышеобразования при электрокристаллизации кобальта / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт // Новые технологии – нефтегазовому региону: материалы Всероссийской научно-практ. конф. Т.2. – Тюмень: ТюмГНГУ, - 2012. - С.87 - 89.

11. Жихарева И.Г. Исследование поверхностной структуры сплава Zn-Ni методом атомно-силовой микроскопии / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт, И.В. Курмангашинов // Новые технологии – нефтегазовому региону: материалы Всероссийской научно-практ. конф. Т.2.– Тюмень: ТюмГНГУ, - 2012. - С.89 - 92.

12. Жихарева И.Г. Защита нефтепромыслового оборудования с помощью покрытий Zn-Ni, устойчивых к коррозионной агрессивности ландшафтов криолитзоны / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт // Сборник докладов научно-практ. конф. молодых ученых и специалистов Гипротюменнефтегаза, посв. 100-летию со дня рождения В.И. Муравленко «Инновации в проектировании, строительстве и эксплуатации нефтяных и газовых месторождений» - Тюмень, ОАО «Гипротюменнефтегаз», - 2012.-С.23-26.

13. Жихарева И.Г. Влияние структуры на магнитные свойства сплавов Co-Ni-Mn / И.Г. Жихарева, А.А. Ракашов, В.В. Шмидт // Сборник докладов научно-практ. конф. молодых ученых и специалистов Гипротюменнефтегаза, посв. 100-летию со дня рождения В.И. Муравленко «Инновации в проектировании, строительстве и эксплуатации нефтяных и газовых месторождений» - Тюмень, ОАО «Гипротюменнефтегаз», - 2012.-С.146-148.

14. Ракашов А.А. Повышение микротвердости с помощью покрытий Ni-Co-Cr / А.А. Ракашов, В.В. Шмидт, И.Г. Сидорова, И.Г. Жихарева // Новые технологии – нефтегазовому региону: материалы Всероссийской научно-практ. конф. Т.1. – Тюмень: ТюмГНГУ, - 2013.- С.110-111.