На правах рукописи

Демчук Жанна Александровна

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ Dy₂S₃ – EuS, EuS-Dy₂S₃-Cu₂S, ЭНТАЛЬПИИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ. СТРУКТУРА СОЕДИНЕНИЯ EuHoCuS₃

02.00.04 – физическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Тюмень – 2015

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Тюменский государственный университет»

Научный руководитель:	доктор химических наук, профессор Андреев Олег Валерьевич			
Официальные оппоненты:	Воробьева Вера Павловна доктор физико – математических наук, доцент, Федеральное государственное бюджетное учреждение науки Институт физического материаловедения Сибирского отделения Российской академии наук, ведущий научный сотрудник			
	Филонова Елена Александровна кандидат химических наук, доцент, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» доцент кафедры физической химии			
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук			

Защита диссертации состоится «27» марта 2015 года в 16 часов 30 минут на заседании диссертационного совета Д212.274.11 при Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Тюменский государственный университет» по адресу: 625003, г. Тюмень, ул. Перекопская, 15а, аудитория 410

С диссертацией можно ознакомиться в информационно-библиотечном центре Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Тюменский государственный университет» и на сайте http://d21227411.utmn.ru/defenses/

Автореферат разослан « » февраля 2015 года

Ученый секретарь диссертационного совета кандидат химических наук

Нестерова Наталья Владимировна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Соединения $EuLnCuS_3$ (Ln = Tb, Dy, Tm, Yb, Lu), являются неметаллическими магнитными материалами [1]. В работах [2, 3] получены соединения $EuLnCuS_3$ (Ln=La – Nd, Sm, Gd), определены их структуры, температуры и энтальпии инконгруэнтного плавления. Установлено положение конод в системах Cu_2S – EuS – La_2S_3 , Cu_2S – EuS – Nd_2S_3 , количество и положение полей первичной кристаллизации фаз. Построены фазовые диаграммы систем Ln_2S_3 – EuS (Ln=La, Nd, Gd) [4, 5].

Сведения об изучении фазовых равновесий в системах $Cu_2S - EuS - Ln_2S_3$ (Ln=Tb-Lu) в литературе не обнаружено.

Диспрозий Dy $(4f^{10}5d^{0}6s^{2})$ проявляет стабильную валентность равную 3, является типичным редкоземельным элементом иттриевой подгруппы, что позволяет выделить систему Cu₂S –EuS – Dy₂S₃ в качестве модельной. В системе Dy₂S₃ – EuS образуется соединение ромбической сингонии EuDy₂S₄, сведений по фазовой диаграмме системы не обнаружено.

Не установлены температурные интервалы устойчивости соединений EuLnCuS₃ (Ln = Tb, Dy, Ho, Er, Yb, Lu,) температуры и характер их плавления, не обнаружено сведений об образовании соединений для Ln=Ho, Er. Сложный состав соединений EuLnCuS₃ определяет актуальность разработки эффективных методов получения соединений в однофазном состоянии.

Цель работы состоит в установлении фазовых равновесий в системах Dy_2S_3 -EuS, EuS- Dy_2S_3 -Cu₂S, Cu₂S – EuLnCuS₃ (Ln=Gd, Dy, Yb), в получении соединений EuLnCuS₃ (Ln = Tb, Dy, Ho, Er, Yb, Lu), в определении температур, энтальпий их фазовых превращений, в расшифровке структуры нового соединения EuHoCuS₃.

Задачи исследования:

1. Изучить фазовые равновесия в системе $EuS-Dy_2S_3-Cu_2S$, построить фазовые диаграммы систем $Dy_2S_3 - EuS$, $DyCuS_2-EuS$, $Cu_2S-EuLnCuS_3$ (Ln=Gd, Dy).

2. Установить положение полей первичной кристаллизации фаз в системе $EuS-Gd_2S_3-Cu_2S$.

3. Установить фазовый и зеренный составы шихты, полученной термолизом нитратов металлов; определить условия получения (температура, время) однофазных образцов соединений EuLnCuS₃ (Ln=Gd, Lu) при обработке шихты в потоке сульфидирующих газов H₂S и CS₂.

4. Определить термодинамические характеристики фазовых превращений в соединениях $EuLnCuS_3$ (Ln = Tb, Dy, Ho, Er, Yb, Lu).

5. Определить рентгенометрические, структурные и физико-химические характеристики соединения EuHoCuS₃.

Научная новизна

1. Впервые построены фазовые диаграммы систем Dy_2S_3 – EuS, $DyCuS_2$ -EuS, Cu_2S -EuLnCuS₃ (Ln=Gd, Dy). В системе EuS-Gd_2S_3-Cu_2S установлено положение конод при 970 К и положение полей первичной кристаллизации фаз.

В системе Dy_2S_3 – EuS образуется соединение ромбической сингонии EuDy₂S₄ плавящееся инконгруэнтно при $T_{nn} = 2150\pm40$ К. Фазовая диаграмма системы DyCuS₂-EuS с образованием соединения ромбической сингонии EuDyCuS₃ с инконгруэнтным плавлением при $T_{nn} = 1727\pm5$ К. Растворимость на основе EuS составляет 7 мол. % при T= 1730±5 К. Фазовые диаграммы систем Cu₂S-EuLnCuS₃ (Ln=Gd, Dy) эвтектического типа с ограниченными твердыми растворами на основе α -Cu₂S и β -Cu₂S (открытого типа), γ -Cu₂S (закрытого типа). В системе EuS-Gd₂S₃-Cu₂S имеются поля первичной кристаллизации фаз EuS; α -, β -, γ -, δ -EuGdCuS₃; CuGdS₂, твердого раствора γ –Gd₂S₃ – EuGd₂S₄; β -Cu₂S, γ - Cu₂S; твердого раствора фазы C₀ (система Cu₂S – Gd₂S₃).

2. Впервые определены температуры, энтальпии полиморфных переходов у соединений EuLnCuS₃ (Ln = Tb, Dy, Ho, Er, Yb, Lu), которые линейно изменяются в зависимости от r Ln³⁺: EuTbCuS₃ T₁= 1478K, Δ H₁=1.55 кДж/моль, T₂ = 1516 K, Δ H₂=0.89 кДж/моль, T₃= 1548K, Δ H₃=1.55 кДж/моль, T_{mn} = 1722±5 K; EuLuCuS₃ T₁= 1549 K, Δ H₁=1.89 кДж/моль, T₂ = 1601 K, Δ H₂=0.52 кДж/моль, T₃= 1628 K, Δ H₃=0.86 кДж/моль, T_{mn} = 1745±5 K.

3. Шихта, полученная при термолизе растворов нитратов металлов 1250 -1300 К, образована из сложных оксидов $Eu_{0.78}Gd_{1.22}CuO_4$, $Eu_{0.95}Gd_{1.05}O_3$, CuO, $(Eu_x, Gd_y)_2O_3$, Gd_2CuO_4 (для соединения $EuGdCuS_3$), (Eu, $Lu)_2Cu_2O_5$, $Eu_{1.09}Lu_{0.91}O_3$, $Eu_{1.03}Lu_{0.97}O_3$, (Eu, $Lu)_2CuO_4$, $Eu_{0.49}Lu_{1.51}O_3$ (для соединения $EuLuCuS_3$). Уменьшение размеров зерен , (субзерен) шихты с 100-200 мкм (0,5-1 мкм) до 1-10 мкм (50-100 нм) сокращает продолжительность обработки шихты в потоке H_2S и CS_2 . Однофазные образцы соединений $EuLnCuS_3$ получены при 1220 К и 1370 К в течение 12-10 часов ($EuGdCuS_3$), 27-23 часов ($EuLuCuS_3$); при 1370 К в течение 4-3 часов ($EuGdCuS_3$), 7-5 часов ($EuLuCuS_3$).

4. Впервые получено соединение EuHoCuS₃. Низкотемпературная модификация α - EuHoCuS₃ имеет ромбическую сингонию, пр.гр. *Рпта*, a = 1.01484(2) нм, b = 0.39195(1) нм, c = 1.28499(2) нм, CT Eu₂CuS₃.

Практическая значимость

Впервые построенные фазовые диаграммы систем Dy_2S_3 -EuS, $DyCuS_2$ -EuS, Cu_2S -EuLnCuS_3 (Ln=Gd, Dy), являются новыми справочными данными. Установленные метрические характеристики диаграмм позволяют определить условия получения образцов заданных химических и фазовых составов. Определены условия проведения и продолжительности отжигов, обеспечивающие получение однофазных образцов соединений и твердых растворов в системах.

Установленные сведения по температурам полиморфных переходов, температурам плавления соединений EuLnCuS₃ (Ln= Tb, Dy, Ho, Er, Yb, Lu), являются новыми справочными данными, а также могут использоваться для проведения термодинамических расчетов в системах.

Разработан новый метод получения порошков соединений EuLnCuS₃ (Ln=Gd, Lu) в однофазном состоянии при сульфидировании шихты полученной

термолизом совместно закристаллизованных нитратов металлов, либо термолизом распыленных растворов нитратов металлов.

Рентгенометрические характеристики соединения EuHoCuS₃ оформлены в виде таблиц по формам их представления в международные базы данных.

На защиту выносятся:

1. Фазовые диаграммы систем: Dy_2S_3 -EuS, $DyCuS_2$ -EuS, Cu_2S -EuLnCuS₃ (Ln=Gd, Dy), фазовые равновесия в системе EuS-Dy₂S₃-Cu₂S при 970 К. Количество и положение полей первичной кристаллизации фаз в системе EuS-Gd₂S₃-Cu₂S: EuS; α -, β -, γ -, δ -EuGdCuS₃; CuGdS₂, твердого раствора γ –Gd₂S₃ – EuGd₂S₄; β -, γ - Cu₂S; твердого раствора фазы C₀ (система Cu₂S – Gd₂S₃).

2. Впервые обнаруженное явление полиморфизма у соединений EuLnCuS₃ (Ln=Tb, Dy, Ho, Er, Yb, Lu), значения температур и энтальпий полиморфных переходов, инконгруэнтный характер плавления соединений EuLnCuS₃ (Ln=Tb, Dy, Ho, Er, Yb, Lu).

3. Установленные фазовый и зеренный составы шихты, полученной термолизом нитратов металлов; условия получения (температура, время) однофазных образцов соединений EuLnCuS₃ (Ln=Gd, Lu) при обработке шихты в потоке сульфидирующих газов H₂S и CS₂ при 1220 и 1370 К.

4. Рентгенометрические характеристики и установленная структура соединения EuHoCuS₃.

Достоверность экспериментальных данных обеспечивается применением физико-химических методов анализа, комплексных выполненных высокотехнологичном оборудовании (дифрактометр «PANalytical X'Pert PRO»; Setsys Evolution 1750 (TGA – DSC 1600); растровый электронный микроскоп «Philips SEM 515»; зондовая нанолаборатория «Ntegra»), с использованием современного программного обеспечения (программа «ITO», «Thermogram Analyser» и др.). Фазовые диаграммы построены из принципа согласованности результатов нескольких независимых методов физико – химического анализа. Совокупность факторов позволяет считать результаты, проверенные исследованиями, достоверными.

Апробация работы

Материалы диссертационной работы представлены на Всероссийской научной конференции «Актуальные вопросы химической технологии и защиты окружающей (Новочебоксарск, 25-26 октября среды» 2012); XIV Международной конференции по термическому анализу в калориметрии в России (Санкт-Петербург, 23-28 сентября 2013); XXIV Российской молодежной конференции (Екатеринбург, 23-25 апреля 2014); XXV Российской конференции по электронной микроскопии (Черноголовка, 2-6 июня 2014); 9-м семинаре СО РАН УрО PAH «Термодинамика И материаловедение (Новосибирск, 30 июня-4 июля 2014).

Публикации

По теме диссертации опубликовано 9 научных работ, в том числе 2 статьи в рецензируемых научных журналах.

Выполнение работы поддержано грантом молодежного научно – инновационного конкурса «У.М.Н.И.К.», 2012 г.

Работа выполнена при финансовой поддержке государства в лице Минобрнауки России ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 - 2013 гг. № 14.В37.21.1184; Министерства образования и науки РФ (ГЗОУ № 2014/228 № НИР 996).

Личный вклад автора. Совместно с руководителем определены объекты, цели и задачи исследований. Автором лично получены образцы в исследуемых системах, выполнен эксперимент по их изучению методами физико – химического анализа, построены зависимости «состав – свойство». Совместно с руководителем проведено обсуждение полученных результатов.

Структура и объем работы.

Диссертация состоит из введения, четырех глав, выводов, списка литературы, включающего 108 наименований. Работа изложена на 124 страницах, содержит 72 рисунка и 19 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, сформулированы цель работы, научная новизна, практическая значимость работы, основные положения, выносимые на защиту.

В первой главе обобщены литературные данные по кристаллографическим и физико – химическим характеристикам соединений ALnCuS₃ (A = Sr, Eu, Ba; Ln=La-Lu), фазовым равновесиям в двойных и тройных системах Cu–S, Ln–S, Cu₂S–Ln₂S₃, EuS–Ln₂S₃, Cu₂S–EuS, EuS–Ln₂S₃–Cu₂S (Ln = La, Nd, Gd). Приведены выводы по литературному обзору.

Вторая глава посвящена описанию методов получения соединений (Cu₂S, EuS, Ln₂S₃) и физико-химических методов анализа исследуемых систем. Сульфиды РЗЭ синтезированы из оксидов в потоке H₂S и CS₂ при 1270-1370 К в течение 5 - 20 ч. Сульфидирование проводили до исчезновения на рентгенограммах рефлексов оксисульфидных фаз.

Образцы заданных составов получены сплавлением исходных сульфидов в графитовых тиглях. Образцы отжигались: в вакуумированных и запаянных кварцевых ампулах при 970-1170 К в течение 1500-5300 часов. В процессе отжига контролировали фазовый состав и микротвердость образцов.

Физико-химические методы анализа. <u>Рентгенофазовый анализ (РФА)</u> проводили на дифрактометре «ДРОН-7» с использованием СиК_а-излучения, Niфильтр, для определения фазового состава образцов. Для расчета и построения зависимости «состав-параметр элементарной ячейки» использовали программный комплекс «PDWin 4.0». Точность определения параметров э.я. $\pm 0.0002 - 0.0005$ нм. Дифрактометр «PANalytical X'Pert PRO» использовали для рентгенографического исследования соединения EuHoCuS₃, с использованием СоК_а – и СиК_а. Параметры решетки EuHoCuS₃ определены с помощью программы «ITO», с точностью ± 0.00003 нм. Для построения кристаллической структуры использовали пакет программного обеспечения «Diamond 3».

<u>Дифференциальную – сканирующую калориметрию (ДСК)</u> проводили на установке «Setsys Evolution 1750 (TGA – DSC 1600)» с программным обеспечением «Setsoft 2000», для определения температур и энтальпий фазовых превращений, для построения линий ликвидуса и солидуса. Измерения проводились от 150 до 1600° С, погрешность в определении температур равна 0.3 %, теплот 10-15 %. Для температур плавления соединений EuLnCuS₃ ±1%.

<u>Визуально – политермический анализ (ВПТА)</u> использовали для определения температур, ликвидуса и солидуса системы EuS – Dy₂S₃ и инконгруэнтного плавления соединения EuDy₂S₄. Погрешность в определении температуры составляет 1-1.5 % от измеряемой величины.

<u>Микроструктурный (MCA) и дюрометрический анализы (ДМА)</u>. МСА проводили на полированных образцах с использованием оптического металлографического микроскопа: «МЕТАМ ЛВ-31». ДМА проводили на приборе «ПМТ – 3М».

<u>Растровая электронная микроскопия (РЭМ).</u> РЭМ проводили на приборе «Philips SEM 515», использовали для топографического и энергодисперсионного анализов оксидных прекурсоров и порошкообразных проб образцов EuLnCuS₃ (Ln=Gd, Lu), полученных на разных этапах сульфидирования шихты..

Зондовую нанолабораторию «Ntegra», управляемую посредством программы «Nova», использовали для исследования изменения формы и размера зерен в процессе получения EuLnCuS₃ (Ln=Gd, Lu) в порошкообразном состоянии.

Программы <u>«Edstate 2D» и «Edstate 3D»</u> применялись для графического построения зависимостей «состав – свойство» фазовых диаграмм систем.

Температура в муфельных печах поддерживалась в пределах ± 10 К, при индукционном нагреве графитовых тиглей ± (20 – 40) К.

В третьей главе приведены рентгенометрические и структурные характеристики впервые полученного соединения EuHoCuS₃. Впервые методом ДСК установлено явление полиморфизма, определены температуры и энтальпии полиморфных превращений у соединений EuLnCuS₃ (Ln=Tb, Dy, Ho, Er, Yb, Lu). Высокотемпературные модификации соединений EuLnCuS₃ при закалке на воздухе, в солевые растворы не зафиксированы.

Образец соединения EuHoCuS₃ отожженый при 1170 К по данным РФА, имеет фазовый состав: фаза EuHoCuS₃ 99.2 мол. %, примесь $Ho_2O_2S - 0.8$ мол. % (рис. 1).

Для соединения установлены кристаллохимические характеристики: EuHoCuS₃, ромбическая сингония, CT Eu₂CuS₃, пр.гр. Pnma, a= 1.01484(2) нм, b = 0.39195(1) нм, c = 1.28499(2) нм.

Рисунок 1. Линии дифрактограммы пробы образца соединения EuHoCuS₃: экспериментальная (сплошная линия), расчетная (пунктир) и разностная (точки): дифрактометр «PANalytical X'Pert PRO», СоКα – излучение. Положения пиков основной фазы показаны штрихами

В соединении EuHoCuS₃ искаженные тетраэдры CuS₄ и октаэдры HoS_6 формируют слой CuHoS₃ перпендикулярной оси *с*, между которыми располагаются одношапочные тригональные призмы EuS₇, образуя двумерные сетки в плоскости b-а (рис. 2). Координаты атомов и тепловые параметры приведены в табл. 1.

Рисунок 2. Перспективные проекции [010] структуры соединения EuHoCuS₃, построенные в программе Diamond 3.

Таблица 1. Координаты и анизотропные тепловые параметры атомов в структуре EuHoCuS₃

	1 2	2 1	-	
Атом	X	У	Z	$U_{ m _{3K}}$, ${ m \AA}^2$
Eu	0.7685(1)	0.25	0.001(8)	0.019(8)
Но	0.0120(1)	0.25	0.7433(1)	0.014(9)
Cu	0.2387(2)	0.25	0.2219(2)	0.018(1)
S1	0.0527(4)	0.25	0.1154(4)	0.011(1)
S2	0.4185(4)	0.25	0.1089(5)	0.011(1)
S3	0.2601(4)	0.25	0.8265(3)	0.011(1)

Охлажденные из расплава образцы соединений EuLnCuS₃, согласно РФА, помимо основной фазы содержали примеси: фазы EuS, EuLn₂S₄, Ln₂S₃, LnCuS₂.

Только после длительных отжигов (при 970 К в течение 3650 – 5230 часов и при 1170 К 720-2800 часов) образцы по данным РФА становятся однофазными.

При первом нагреве однофазных образцов соединений EuLnCuS₃ (Ln = Tb, Dy, Ho, Er, Yb, Lu) методом ДСК зафиксированы три пика тепловых эффектов (табл. 2), после протекания которых образцы остаются в поликристаллическом состоянии (неизменна форма ребер и граней образцов). В форме пиков имеются явно выраженные линейные участки. Данные тепловые эффекты вызваны нонвариантными фазовыми превращениями, которыми могут быть только полиморфные переходы у соединений EuLnCuS₃. Модификации соединений с повышением температуры обозначены α -, β -, γ -, δ - EuLnCuS₃. Пик теплового эффекта плавления образцов фаз δ -EuLnCuS₃ имеет размытый характер, происходит его наложение с пиком плавления выделяющихся кристаллов фазы EuS. Определены температуры плавления соединений EuLnCuS₃ (табл. 2).

Таблица 2. Температуры и теплоты фазовых превращений соединений EuLnCuS₃ (Ln = Dy, Er, Ho, Lu, Tb, Yb)

EuLnCuS ₃	Температуры (К) и теплоты фазовых превращений (кДж/моль)								Т пл, К				
	отжиг 1170 К					отжиг 970 К				±17 K			
	T ₁	ΔH_1	T ₂	ΔH_2	T ₃	ΔH_3	T ₁	ΔH_1	T ₂	ΔH_2	T ₃	ΔH_3	
EuTbCuS ₃	1478	1.55	1516	0.89	1548	1.55	-	-	-	-	-	-	(1722)
EuDyCuS ₃	1500	4.41	1543	1.04	1568	2.04	1499	4.69	1542	1.42	1566	2.28	(1757)
EuHoCuS ₃	1516	3.72	1562	1.19	1591	2.19	1515	3.38	1564	0.81	1591	1.29	(1774)
EuErCuS ₃	1524	2.35	1575	0.72	1602	1.34	-	-	-	-	-	-	(1771)
EuYbCuS ₃	1513	2.29	1564	1.36	1594	2.38	-	-	-	-	-	-	(1778)
EuLuCuS ₃	1549	5.26	1601	1.46	1628	2.38	1546	4.48	1599	0.88	1626	1.56	(1745)

Рисунок 3. Дифференциальные термические зависимости для проб однофазных образцов сложных сульфидов EuLnCuS₃ (Ln = Tb, Dy, Ho, Lu).

Изучено влияние зеренного, фазового состава шихты на динамику выхода соединений EuLnCuS₃ (Ln=Gd, Lu) при воздействии на шихту при 1220 К, 1370 К избыточного потока газов H₂S и CS₂. Шихта, полученная термолизом совместно закристаллизованных нитратов металлов при 1250 – 1300 К, по данным РЭМ образована зернами усредненных размеров 100-200 МКМ, субзерна 0,5-1 мкм – (шихта I). При распылении растворов нитратов металлов в образующейся шихте выделены зерна шихты 1-10 мкм, субзерна 50-100 нм -(шихта II) (рис. 4). Шихта состоит из сложных оксидов Eu_{0.78}Gd_{1.22}CuO₄, $Eu_{0.95}Gd_{1.05}O_3$, CuO, (Eu_x, Gd_v)₂O₃, Gd₂CuO₄, (Eu, Lu)₂Cu₂O₅, Eu_{1.09}Lu_{0.91}O₃, Eu_{1.03}Lu_{0.97}O₃, (Eu, Lu)₂CuO₄, Eu_{0.49}Lu_{1.51}O₃. При сульфидировании шихты в потоке H₂S и CS₂, при температурах 1220 и 1370 К однофазные образцы соединений EuLnCuS₃ образуются для шихты I в течение 12-10 (EuGdCuS₃), 27-23 часов (EuLuCuS₃); для шихты II в течение 4-3 (EuGdCuS₃), 7-5 часов (EuLuCuS₃) (рис. 5). На основе установленных закономерностей разработан эффективный метод получения порошков соединений $EuLnCuS_3$ (Ln = Tb, Dy, Ho, Er, Yb, Lu).

Риснок. 4. Электронно-микроскопические снимки поверхности, полученной распылением нитратов в горячую печь и подвергшейся сульфидированию при 1220 К в течение 45 мин (А); 1 ч. (Б); 5 ч. (В). Эволюция фазово-зеренного состава соединения EuGdCuS₃.

Рисунок 5. Зависимости ($\tau - \alpha$) образования фаз А – EuGdCuS₃, Б – EuLuCuS₃; \bullet при 1220 К из смеси оксидов, полученной термическим разложением совместно закристаллизованных нитратов ; \bullet при 1220 К из смеси оксидов, полученной способом распыления раствора; \bullet при 1370 К из смеси оксидов, полученной способом распыления раствора.

Четвертая глава. Впервые построены фазовые диаграммы систем $Dy_2S_3 - EuS$, $Cu_2S - EuGdCuS_3$, $Cu_2S - EuDyCuS_3$. Установлено положение конод в системе $EuS - Dy_2S_3 - Cu_2S$ при 970 К, положение полей первичной кристаллизации фаз в системе $EuS - Gd_2S_3 - Cu_2S$.

Система $Dy_2S_3 - EuS$ (рис. 6). В системе образуется тетрасульфид ди диспрозия европия EuDy₂S₄ ромбической сингонии, пр.гр. *Pnma*, CT CaV₂O₄, a=1.1877 нм, b=0.3940 нм, c=1.4213 нм. Плавится инконгруэнтно по схеме: EuDy₂S₄ \leftrightarrow TP EuS + ж при 2150 ± 40 К. Протяженность TP на основе EuS 9 мол. % при 1770 К, на основе γ – Dy₂S₃ 8 мол. %, 1770 К. Проявляется генеалогическое родство с фазовыми диаграммами систем Ln₂S₃ – EuS (Ln=La, Nd, Gd) [5]. В твердом растворе на основе γ – Dy₂S₃ имеется точка максимума, в которой TP распадается инконгруэнтно по схеме : TP γ -(Dy₂S₃) \rightarrow ж + EuDy₂S₄ при 2100 К.

Система CuDyS₂ – EuS (рис. 6). В системе образуется трисульфид меди диспрозия европия EuDyCuS₃ (1DyCuS₂:1EuS) ромбической сингонии, a=1.01906 нм, b=0.39269 нм, c=1.28472 нм, CT Eu₂CuS₃, пр.гр. *Pnma*, H = 2320 МПа, плавящийся инконгруэнтно при 1727 К. В пределах обнаружения методов ФХА не зафиксировано образования твердых растворов (±0.5 мол. %) на основе фазы EuDyCuS₃. В образцах различных фазовых составов постоянны температуры проявления полиморфных переходов, содержание фаз в образцах соответствует их положению на диаграмме. Величина растворимости на основе EuS составляет 12 мол. % при 1485 К. Между фазами CuDyS₂ и EuDyCuS₃ образуется эвтектика 12 мол. % EuS, T = 1485 К.

Разрез $CuDyS_2$ — EuS является частично квазибинарным. В виду инконгруэнтного плавления фазы $CuDyS_2$ двухфазные поля разграничены областью $CuDyS_2+Dy_2S_3+ж$.

Рисунок 6. Фазовые диаграммы систем Dy_2S_3 -EuS, $DyCuS_2$ - EuS

Составлены уравнения фазовых превращений для нонвариантных точек фазы $EuDyCuS_3$ (табл. 3).

DyCuS ₂ -EuS								
Вид фазового	Координаты		ΔH_{nn} ,	Уравнения фазовых превращений				
превращения	нонвариантных		кДж/моль					
	точек							
	Состав	Т, К						
Инконгруэнтное	50.0 мол.	1727	-	EuDyCuS _{3 TB} (0.50 EuS; 0.50 DyCuS ₂) \leftrightarrow 0.17 TP				
плавление соединения	% EuS			EuS (0.92 EuS; 0.08 DyCuS ₂) + 0.83 Ж (0.42 EuS; 0.58				
EuDyCuS ₃				DyCuS ₂)				
полиморфный	50.0 мол.	1567	(1.90)	$EuDyCuS_{3 TB}$ (0.50 EuS; 0.50 DyCuS ₂) \leftrightarrow 0.42 TP				
переход γ-DyCuS ₂ ↔δ-	% EuS			EuS (0.93 EuS; 0.07 DyCuS ₂) + 0.58 Ж (0.18 EuS; 0.82				
DyCuS ₂				DyCuS ₂)				
полиморфный переход	50.0 мол.%	1542	(0.95)	$EuDyCuS_{3 TB} (0.50 EuS; 0.50 DyCuS_2) \leftrightarrow 0.45 TP$				
β -DyCuS ₂ $\leftrightarrow \gamma$ -DyCuS ₂	EuS			EuS (0.935 EuS; 0.065 DyCuS ₂) + 0.55 X (0.15 EuS;				
				$0.85 \text{ DyCuS}_2)$				
полиморфный переход	50.0мол.%	1499	(4.27)	$EuDyCuS_{3 TB}$ (0.50 EuS; 0.50 DyCuS ₂) \leftrightarrow 0.46 TP				
α -DyCuS ₂ $\leftrightarrow\beta$ -DyCuS ₂	EuS			EuS (0.935 EuS; 0.065 DyCuS ₂) + 0.54 $\%$ (0.13 EuS;				
				$0.87 \text{ DyCuS}_2)$				

Таблица 3. Балансные уравнения фазовых превращений в системе

DvCuS₂–EuS

Рисунок 7. Фазовые диаграммы систем Cu_2S – EuGdCuS₃, Cu_2S - EuDyCuS₃

Системы Cu₂S – EuLnCuS₃ (Ln=Gd, Dy). Фазовые диаграммы систем качественно подобны. На основе полиморфных модификаций фазы Cu₂S, образуются TP открытого и закрытого типов. Твердый раствор β - (Cu₂S) существует от 385 К до температур его конгруэнтного распада по схеме: TP β (Cu₂S) \leftrightarrow TP γ – (Cu₂S) + κ .

Температуры проявления тепловых эффектов протекания фазового превращения фиксируются методом ДСК и составляют 1245 K, 1248 K соответственно (рис. 7). Нахождение в равновесии фаз TP β-(Cu₂S) + EuLnCuS₃,

ТР α-(Cu₂S) + EuLnCuS₃ (Ln=Gd, Dy) позволяет заключить об образовании открытых областей твердых растворов на основе TP α – (Cu₂S) и TP β - (Cu₂S). Область TP γ – (Cu₂S) не находится в равновесии с фазой EuDyCuS₃ и классифицирована как закрытая. Температуры полиморфных переходов в фазах EuGdCuS₃ и EuDyCuS₃ в системах Cu₂S – EuLnCuS₃ проявляются при тех же температурах, что и для соединений EuLnCuS₃. Не обнаружено образования TP (±0.5 мол. %) на основе фаз EuLnCuS₃.

В микроструктуре образцов систем в явном виде выражены первичные и эвтектические кристаллы фаз. Вблизи состава эвтектики методом ДСК не зафиксировано понижение линий ликвидус к эвтектической точке. На рисунках нанесены данные эксперимента. Возможное положение линий ликвидус указано пунктиром в соответствии с правилами физико – химического анализа (рис. 7).

Рисунок 8. Положение конод в системе EuS–Dy₂S₃–Cu₂S при 970 К. Точками обозначены изученные образцы. Коноды изображены линиями внутри треугольника.

Система $Cu_2S - EuS - Dy_2S_3$. Трисульфид меди, диспрозия, европия EuDyCuS₃ находится в равновесии с фазами трапеции $Cu_2S - CuDyS_2 - EuDy_2S_4$ – EuS, что определяет триангуляцию данной части тройной системы.

Нахождение фазы $CuDyS_2$ в равновесии с фазой $EuDy_2S_4$ выделяет симплексный треугольник $DyCuS_2 - Dy_2S_3 - EuDy_2S_4$. Всего при триангуляции системы выделено 12 подчиненных систем (треугольников). В пяти системах в равновесии находятся по две фазы: $EuDy_2S_4 - TP \beta$ -(Cu_2S), $EuDyCuS_3 - TP \gamma$ -(Cu_3DyS_3), $EuDyCuS_3 - TP \beta$ -(Cu_3DyS_3), $CuDyS_2 - TP (\alpha - Dy_2S_3)$, $EuDyCuS_3 - TP (EuS)$.

В семи подчиненных системах в равновесии находятся фазы, образующие данный треугольник (треугольники I, III, V, VII, IX, X, XI, рис. 8). Инконгруэнтное плавление фазы EuDyCuS₃, образованной в системе Cu₂S – Dy₂S₃ – EuS областей твердых растворов, а также перитектические взаимодействия определяют присутствие в тройной системе только частично квазибинарных разрезов. Определено положение части полей образования первичных кристаллов фаз системы $Cu_2S - Dy_2S_3 - EuS$.

Фазовые равновесия в системах Cu_2S – $EuLnCuS_3$ (Ln=Yb, Er, Lu). Фазовые диаграммы эвтектического типа с областью TP на основе γ -Cu₂S. Согласно MCA между фазами Cu₂S и EuLnCuS₃ образуется эвтектика.

Поля первичной кристаллизации фаз в системе EuS–Gd₂S₃–Cu₂S (рис. 9). В системе EuS–Gd₂S₃–Cu₂S по данным MCA и PФA выделено 11 полей образования кристаллов фаз из расплава: EuS; α -, β -, γ -, δ -EuGdCuS₃; CuGdS₂, твердого раствора γ –Gd₂S₃ – EuGd₂S₄; β -, γ - Cu₂S; твердого раствора фазы C₀ (система Cu₂S – Gd₂S₃).

Установлена последовательность изменения составов эвтектик во внутренней части треугольника. ориентировочно установлены координаты тройных эвтектик (рис. 9Б). В сочетании с данными по температурам ликвидуса составов из тройной системы определено положение изотерм.

Система изотерм объективно отражает изменение поверхности ликвидуса в тройной системе, позволяет подобрать методы, условия проведения экспериментов для получения образцов заданного состава в спеченном или литом состояниях.

Рисунок 9. Поля первичной кристаллизации фаз (А) и проекция поверхности ликвидуса (Б) в системе EuS-Gd₂S₃-Cu₂S.

выводы

1. Впервые построены фазовые диаграммы систем EuS – Dy₂S₃, CuDyS₂ – EuS, Cu₂S – EuGdCuS₃, Cu₂S – EuDyCuS₃. В системе EuS – Dy₂S₃ образуется соединение EuDy₂S₄ ромбической структуры CT CaV₂O₄, *a*= 1.1877 нм, *b*=0.3940 нм, *c* = 1.4213 нм, разлагается инконгруэнтно при T = 2150±40 К. Протяженность твердых растворов составляет: на основе Dy₂S₃ 8 мол. % (T = 1770 K), на основе EuS 9 мол. % (T = 1770 K). Фазовая диаграмма системы CuDyS₂ – EuS с образованием инконгруэнтно плавящегося соединения EuDyCuS₃ при T = 1727±5 K, расторимость на основе EuS составляет 7 мол. % (T = 1730 K), координаты эвтектики составляют 12 мол. % EuS, T = 1485±5 К. Фазовые диаграммы систем Cu₂S – EuLnCuS₃ (Ln=Gd, Dy) эвтектического типа. Твердые растворы на основе β -*Cu₂S* и *α*-*Cu₂S* открытого типа и на основе *γ*-*Cu₂S* закрытого типа.

В системе EuS – Gd_2S_3 – Cu_2S установлено положение полей первичной кристаллизации фаз: EuS; α -, β -, γ -, δ -EuGdCuS₃; CuGdS₂, твердого раствора γ – Gd_2S_3 – EuGd₂S₄; β - Cu₂S, γ - Cu₂S; твердого раствора фазы C₀ (система Cu₂S – Gd₂S₃).

2. Установлен фазовый состав шихты на стадиях получения порошков соединений EuLnCuS₃ (Ln = Gd, Lu). Определено влияние размеров зерен шихты на кинетику образования соединений EuLnCuS₃. Термолиз растворов нитратов металлов (Eu, Ln, Cu) при 1250 - 1300 К приводит к образованию шихты состоящей из сложных оксидов Eu_{0.78}Gd_{1.22}CuO₄, Eu_{0.95}Gd_{1.05}O₃, CuO, (Eu_x, Gd_y)₂O₃, Gd₂CuO₄, (Eu, Lu)₂Cu₂O₅, Eu_{1.09}Lu_{0.91}O₃, Eu_{1.03}Lu_{0.97}O₃, (Eu, Lu)₂CuO₄, Eu_{0.49}Lu_{1.51}O₃. Усредненные размеры зерен шихты составляют: при разложении совместно закристаллизованных нитратов металлов зерна - 100-200 мкм, субзерна 0,5-1 мкм – (шихта I); при распылении растворов нитратов металлов 1-10 мкм, субзерна 50-100 нм – (шихта II). При сульфидировании шихты в потоке H₂S и CS₂, при температурах 1220 и 1370 К однофазные образцы соединений EuLnCuS₃ образуются для шихты I в течение 12-10 (EuGdCuS₃), 27-23 часов (EuLuCuS₃); для шихты II в течение 4-3 (EuGdCuS₃), 7-5 часов (EuLuCuS₃).

3. Впервые обнаружено явление полиморфизма у соединений EuLnCuS₃ (Ln = Tb, Dy, Ho, Er, Yb, Lu), определены температуры, энтальпии полиморфных переходов (T₁..., Δ H₁...), температуры инконгруэнтного плавления соединений (T_{пл}), которые монотонно изменяются в ряду Tb – Lu: EuTbCuS₃ T₁= 1478±5 K, Δ H₁=1.55 кДж/моль, T₂ = 1516±5 K, Δ H₂=0.89 кДж/моль, T₃= 1548±5 K, Δ H₃=1.55 кДж/моль, (T_{пл} = 1722±5 K); EuLuCuS₃ T₁= 1549±5 K, Δ H₁=1.89 кДж/моль, T₂ = 1601±5 K, Δ H₂=0.52 кДж/моль, T₃= 1628±5 K, Δ H₃=0.86 кДж/моль, (T_{пл} = 1745±5 K). Высокотемпературные модификации соединений EuLnCuS₃ (Ln = Tb, Dy, Ho, Er, Yb, Lu) при закалке в водные растворы не фиксируются.

4. Впервые получено соединение EuHoCuS₃. Низкотемпературная модификация соединения имеет ромбическую сингонию, пр.гр. *Рпта*, с параметрами элементарной ячейки: a = 1.01484(2) нм, b = 0.39195(1) нм,

c = 1.28499(2) нм, и принадлежит к структурному типу Eu₂CuS₃, в котором кристаллизуются также низкотемпературные модификации соединений EuLnCuS₃ (Ln=Gd, Tb, Dy)

Цитируемая литература.

- 1. Wakeshima M. Crystal structures and magnetic properties of novel rare-earth copper sulfides, EuRCuS₃ (R = Y, Gd-Lu) / M. Wakeshima, F. Furuuchi, Y. Hinatsu // J. of Phusics: Condens. Matter. 2004. V.16. P. 5503-5518.
- 2. Русейкина, А.В. Синтез соединений EuLnCuS₃ (Ln = La Nd), температуры и теплоты их плавления / А.В. Русейкина, О.В. Андреев // Вестник Тюменского государственного университета. 2010. № 3. С. 221-227.
- 3. Русейкина, А.В. Кристаллическая структура соединений EuLnCuS₃ (Ln = Nd, Sm) // А.В. Русейкина, Л.А. Соловьев, М.С. Молокеев, О.В. Андреев // Журнал неорганической химии. 2012. Т. 57. № 1. С. 86-90.
- 4. Русейкина, А.В. Фазовые состояния в системе EuS Nd₂S₃ // А.В. Русейкина, О.В. Андреев // сб.ст.: Физико химический анализ природных и технических систем. Тюмень: ТюмГУ, 2008. С.127-132.
- 5. Русейкина, А.В. Фазовые состояния в системах EuS Ln₂S₃ (Ln=La-Dy) // сб.ст.: Физико химический анализ природных и технических систем. Тюмень: ТюмГУ, 2008. С.132-139.

Публикации по теме диссертации

Статьи в рецензируемых научных журналах

- 1. Русейкина, А.В. Теплоты фазовых превращений соединения EuGdCuS₃ / А.В. Русейкина, Ж.А. Демчук, А.А. Кислицын // Вестник Тюменского государственного университета. 2012. № 5. С. 19-25.
- 2. Русейкина, А.В. Гетерогенные фазовые равновесия в системе Cu₂S-EuDyCuS₃ / А.В. Русейкина, Ж.А. Демчук, Е.А. Турнаева // Вестник Тюменского государственного университета. 2014. № 5 С. 105-112.

Другие научные публикации

- Андреев, О.В. Кристаллическая структура соединения EuGdCuS₃ / О.В. Андреев, А.В. Русейкина, Ж.А. Боровинская (Демчук) // Физико-химический анализ природных и технических систем: сборник статей. – Тюмень: ТюмГУ, 2008. – С. 3-6.
- 4. Русейкина, А.В. Фазовые составы в системе EuS Cu₂S Gd₂S₃ /O.B. Андреев, А.В. Русейкина, Ж.А. Боровинская (Демчук) // Физико-химический анализ природных и технических систем: сборник статей. Тюмень: ТюмГУ, 2008. С. 149-153.
- 5. Русейкина, А.В. Синтез порошка соединения EuGdCuS₃ / А.В. Русейкина, Ж.А. Демчук // Тез. докл. Всероссийской конференции «Актуальные вопросы химической технологии и окружающей среды» 25-26 октября г. Новочебоксарск, 2012. – Чебоксары: Чувашский университет, 2012. – С.177-178.
- 6. Демчук, Ж.А.. Фазовые превращения в системе DyCuS₂-EuS / Ж.А. Демчук, А.В. Русейкина, Д.С. Адаховский // Тез. конф. Труды XIV Международной конференции по термическому анализу и калориметрии в России 23-28 сентября г. Санкт-Петербург, 2013. Санкт-Петербург: Политехнический ун-т, 2013.- С.139-140.
- Демчук, Ж.А. Фазовые равновесия в системе EuS-Dy₂S₃ / Ж.А. Демчук, А.В. Русейкина // Тез. докл. XXIV Рос. молодеж. науч. конф. «Проблемы теоретической и экспериментальной химии» посвященной 170-летию открытия химического элемента ругений 23-25 апреля г. Екатеринбург, 2014. – Екатеринбург: Урал. ун-т, 2014. – С. 213-214.
- 8. Демчук, Ж.А. Применение методов микроскопии для изучения изменения формы и размера частиц в процессе синтеза EuLuCuS₃ / Ж.А. Демчук, А.В. Русейкина // Тез.

конф. XXV Российской конференции по электронной микроскопии 2-6 июня г. Черноголовка, 2014.- С. 398-399

 Демчук, Ж.А. Гетерогенные равновесия в системе Cu₂S – EuYbCuS₃ / Ж.А. Демчук, А.В. Русейкина // Тез. конф. девятый семинар СО РАН УрО РАН «Термодинамика и материаловедение» 30 июня-4 июля г. Новосибирск, 2014.- Новосибирск: ИНХ СО РАН, 2014. – С.79.