ОПЕРАЦИИ ОБРАЗА И ПРООБРАЗА КАК МНОГОЗНАЧНЫЕ ОТОБРАЖЕНИЯ

Аннотация. В статье представлены теоремы, позволяющие сделать вывод о принадлежности многозначных отображений к тому или иному борелевскому классу.

Ключевые слова: многозначные отображения, борелевские множества, борелевские отображения, непрерывные отображения.

X, Y -Пусть топологические пространства. Обозначим через 2^{X} — множество всех замкнутых подмножеств пространства X. Пусть на 2^{X} множестве задана экспоненциальная топология. Напомним, что экспоненциальной топологией топология, порожденная называется множествами вида:

$$\{V \in 2^X | V \subseteq U\}, \{V \in 2^X | V \cap U \neq \emptyset\},\$$

где U —открытое множество пространства X. [1]

Будем предполагать, что X,Y — компактные метрические пространства. Тогда экспоненциальная топология совпадает с топологией, порождаемой метрикой Хаусдорфа.[1] Расстояние между непустыми множествами $M,N \in 2^X$ в метрике Хаусдорфа определяется формулой:

$$d_H(M,N) = \max \{ \sup_{x \in M} \rho(x,N), \sup_{y \in N} \rho(y,M) \},$$

где $\rho(x,N)=inf_{z\in N}\rho(x,z)$ — расстояние от точки x до множества N. За расстояние между пустым и непустым множеством принимается $d_H(\emptyset,N)=diam\,X.$ [2]

Обозначим через cl(A) замыкание подмножества $A \subseteq X$, то есть наименьшее замкнутое множество, содержащее A.[7]

Будем рассматривать непрерывное отображение $f: X \to Y$, многозначные отображения $F: 2^X \to 2^Y$ и $G: 2^Y \to 2^X$, определяемые соответственно F(M) = cl(f(M)), для каждого $M \in 2^X$, $G(N) = cl(f^{-1}(N))$, для каждого

 $N \in 2^{Y}$.

Семейство $\mathcal A$ подмножеств множества X называется σ -алгеброй, если $1.\emptyset, X \in \mathcal A$

- 2. Если $A \in \mathcal{A}$, то и его дополнение $X \setminus A \in \mathcal{A}$.
- 3. Для любого счетного семейства $A_n \in \mathcal{A}, n \in \mathbb{N}$, его объединение $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.[7]

Пусть X — топологическое пространство. Обозначим через B(X) σ -алгебру, порожденную открытыми множествами пространства X, то есть наименьшую σ -алгебру, содержащую все открытые множества пространства X. Элементы B(X) называются борелевскими подмножествами X.[7]

Отображение $f: X \to Y$, где X, Y — метрические пространства, называется борелевским, если прообраз борелевского подмножества в Y является борелевским подмножеством X.[7]

Многозначное отображение $F: Y \to 2^X$ называется *полунепрерывным сверху (снизу)*, если для любого открытого (замкнутого) множества $A \subseteq X$ прообраз $F^{-1}(2^A) = \{y \in Y | F(y) \subseteq A\}$, где 2^A — множество всех замкнутых подмножеств A, является открытым (замкнутым) в Y.[1]

Теорема 1.

Пусть X, Y — компактные метрические пространства и отображение $f: X \to Y$ — непрерывно. Тогда многозначное отображение $G: 2^Y \to 2^X$, определяемое как $G(N) = cl(f^{-1}(N))$ для каждого $N \in 2^Y$, полунепрерывно сверху и является борелевским отображением первого класса. [3]

Теорема 2.

Пусть задано однозначное отображение $f: X \to Y$, где X и Y — компактные метрические пространства. Рассмотрим многозначное отображение $F: 2^X \to 2^Y$, где $F(M) = cl(f(M)), M \in 2^X$.

Если f — отображение первого борелевского класса, то F — отображение второго борелевского класса. [3]

Теорема 3.

Пусть задано однозначное отображение $f: X \to Y$, где X и Y — компактные метрические пространства. Рассмотрим многозначное отображение $G: 2^Y \to 2^X$, где $G(N) = cl(f^{-1}(N))$, $N \in 2^Y$.

Если f — отображение первого борелевского класса, то G — борелевское отображение.

Теорема 4.

Пусть задано однозначное отображение $f: X \to Y$, где X = [0,1], Y = [0,1]. Рассмотрим функцию Дирихле

$$f(x) = \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q} \\ 0, \text{иначе} \end{cases}$$

Если f — отображение второго борелевского класса, то многозначные отображения $F: 2^X \to 2^Y$ и $G: 2^Y \to 2^X$, где F(M) = cl(f(M)), $M \in 2^X$ и $G(N) = cl(f^{-1}(N))$, $N \in 2^Y$ соответственно, не являются борелевскими отображениями.

Докажем для $F: 2^X \rightarrow 2^Y$.

Рассмотрим функцию
$$f(x) = \begin{cases} x, x \in [0, \frac{1}{2}] \cap \mathbb{I} \\ x, x \in [\frac{1}{2}, 1] \cap \mathbb{Q} \end{cases}$$
. Будем рассматривать

отображение $F: 2^{\left[\frac{1}{2},1\right]} \to 2^{\left[0,1\right]}$. Возьмем замкнутые подмножества 2^{Y} , их образ попадает в $2^{\left[\frac{1}{2},1\right]}$ и не содержит иррациональных точек, в противном случае он попадет в $2^{\left[0,\frac{1}{2}\right]}$ и не будет подмножеством 2^{Y} .

Докажем для $G: 2^Y \rightarrow 2^X$.

Рассмотрим функцию $f(x) = \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q} \\ 0, & \text{иначе} \end{cases}$. Рассмотрим замкнутые подмножества Y. Пусть $N \in 2^Y$ и $0 \in N, 1 \in N$, тогда множество всех замкнутых подмножеств будет состоять из рациональных точек, а их прообраз будет включать в себя как рациональные, так и иррациональные точки. Следовательно, отображение не борелевское.

Из нижеуказанного контрпримера следует невозможность усиления Теоремы 1 и Теоремы 2 на класс борелевских множеств выше второго.

Теорема 5.

Пусть $2^{[0,1]}$ — пространство замкнутых подмножеств отрезка [0,1] с экспоненциальной топологией.

Тогда множество $2^{\mathbb{Q}} = \{K \in 2^{[0,1]} | K \subseteq \mathbb{Q} \}$, где \mathbb{Q} — множество рациональных чисел, не является борелевским.[4]

СПИСОК ЛИТЕРАТУРЫ

- 1. Куратовский К. Топология. Т 1. М.: Мир, 1966. 595 с.
- 2. Куратовский К. Топология. Т 2. М.: Мир, 1966. 625 с.
- 3. Лаврентьева И. Г. Операции над многозначными борелевскими функциями. ВКР. ТюмГУ, 2015.
- 4. Торопыгин А. Ю. Семейство всех замкнутых подмножеств F_{σ} множества не является борелевским в экспоненциальной топологии. ВКР. ТюмГУ, 2016.
- 5. Энгелькинг Р. Общая топология М.: Мир, 1986. 752 с.
- 6. Kechris A. Classical Descriptive Set Theory. Springer Verlag New York, 1995. 404 p.
- 7. Srivastava S. M. A Course on Borel Sets. Springer Verlag New York, 1998.
 264 p.