СЕКЦИЯ 3 Системы и технологии искусственного интеллекта и больших данных

О. Л. Ибряева, М. Мохаммад Южно-Уральский государственный университет, г. Челябинск УДК 004.81

ДИАГНОСТИКА НЕИСПРАВНОСТЕЙ ПОДШИПНИКОВ КАЧЕНИЯ НА ОСНОВЕ СПЕКТРАЛЬНЫХ ПРИЗНАКОВ

Аннотация. Подшипники качения являются основными элементами вращающегося оборудования, своевременное выявление дефектов которых очень важно. Мы предлагаем новый метод в этой области, основанный на разбиении спектра вибрационных сигналов подшипников на сегменты и дальнейшем выделении максимального и минимального значений в каждом сегменте. Отношения этих значений используются на входе нейронной сети — классификатора дефектов.

Ключевые слова: обработка сигнала, подшипник качения, извлечение признаков, нейронные сети, диагностика.

Введение. Подшипники качения имеют большое функциональное значение, и практически не существует механической системы, не содержащей таких элементов [1]. По этой причине обнаружение дефектов подшипников является важной задачей, ее решению посвящено множество работ, большинство из которых основаны на глубоком обучении [2].

Информацию о состоянии подшипника обычно получают по его вибрационному сигналу, характеристики которого для подшипника в нормальном состоянии, отличаются от характеристик сигнала с появившимися в корпусе подшипника дефектами. Выделить из вибрационных сигналов информативные признаки, которые будут чутко реагировать на изменения в его состоянии — важная задача, фактически определяющая точность обучаемого далее на этих признаках классификатора. Таким образом, задача диагностики состояния подшипника делится на две части. Первая связана с извлечением признаков, способных корректно описать каждый из возможных случаев, вторая часть посвящена разработке классификатора с выделенными признаками на входе.

Наиболее часто на этапе выделения признаков используется частотный анализ сигнала, который обычно выполняется с помощью быстрого преобразования Фурье (БПФ) [3]. В последнее время стал популярен и частотно-временной анализ, особенно в случае нестационарных сигналов, и среди многих инструментов, используемых для этой цели, мы можем найти кратковременное преобразование Фурье (STFT) [4].

На втором этапе в качестве классификатора наиболее часто применяются нейронные сети [5]. Трансферное обучение и сверточные нейронные сети использованы в [6]. В статье [7] для классификации неисправностей подшипников качения в условиях шума был разработан автокодировщик на основе сверточных нейронных сетей (CDAE). В работе [8] авторы используют одномерную сверточную сеть.

Постановка задачи. В последнее время наметилась тенденция к использованию все более сложных, мощных и глубоких архитектур нейронных сетей. Исследователи работают над усовершенствованием моделей нейронных сетей и мало задумываются над выявлением более информативных признаков. Во многих работах авторы уже указывали на необходимость новых, применимых на практике, простых решений [9].

Отсюда вытекает следующая постановка задачи — разработать новый, простой в вычислительном отношении, метод диагностики состояний подшипников качения на основе их вибрационных сигналов. Этап выделения признаков должен давать вектор информативных признаков небольшого размера, который затем поступит на вход простого классификатора.

Предлагаемый в этой статье подход к решению данной задачи основан на анализе спектра вибрационных сигналов и подробнее описан в разделе 3. В качестве простого классификатора выступает нейронная сеть, описанная в том же разделе. Чтобы проверить правильность разработанного метода, мы использовали набор данных Intelligent Maintenance Systems (IMS) [10]. Преимущества данного исследования заключаются в следующем:

1. Совершенно новый метод классификации дефектов.

2. Информативный вектор признаков низкой размерности.

3. Простота используемого классификатора.

4. 100% точность на наборе данных IMS.

Материалы и методы

Извлечение признаков

Метод, представленный в этом исследовании, основан на расчете отношения максимального значения к минимальному значению в сегментах спектра сигнала.

Рассмотрим спектр вибрационных сигналов. На рис. 1 показана мощность спектра сигналов из набора данных IMS; каждый отвечает своему типу дефекта. Отметим, что предварительно мы нормализовали каждый сигнал так, чтобы их значения находились в диапазоне [-1, +1]. Мощность спектра сигналов также находится в приблизительно одном и том же диапазоне.

Рис. 1. Мощность спектра сигналов из набора данных IMS: а) нет дефектов; б) дефект шарика; в) дефект внутреннего кольца; г) дефект внешнего кольца

Можно заметить, что энергия сигнала для каждого типа дефекта сосредоточена в определенной области спектра и варьируется между собой. Кроме того, мы можем обнаружить, что спектральные максимальные пики и минимальные спектральные значения также сосредоточены в определенных спектральных областях в соответствии с типом присутствующего искажения, которое выражает сигнал.

Чтобы лучше объяснить предложенную идею, на рис. 2 показана конкретная область спектра сигналов — область между нулем и 240 Гц. Этот рисунок идеально объясняет суть предлагаемого решения. Из этого рисунка можно сделать вывод, что спектральные пики и минимальные значения спектра в этой области различаются в зависимости от дефекта в подшипнике качения, и поэтому расчет отношения максимального значения к минимальному значению также будет различаться в зависимости от характера искажения.

Рис. 2. Мощность спектра сигналов в интервале [0,240] Гц: а) нет дефектов; б) дефект шарика; в) дефект внутреннего кольца; г) дефект внешнего кольца

Алгоритма выделения признаков таков:

- рассчитать одностороннее БПФ сигнала;
- рассчитать мощность спектра;
- разделить спектр на 50 равных интервалов;

• рассчитать максимальное и минимальное значения и их отношение для каждого интервала;

• получить вектор признаков из 50 значений.

Чтобы проверить что выделенные признаки адекватно описывают состояния подшипников, мы нашли их для сигналов из набора данных IMS, который содержит данные для 4 различных состояний подшипников качения (табл. 1). Для выделенных признаков в 50-мерном пространстве мы использовали алгоритм главных компонент (PCA) для уменьшения размерности до 3, чтобы «посмотреть» на них в трехмерном пространстве.

Таблица 1

Класс	Дефект	Число образцов в обучающей выборке	Число образцов в обучающей выборке
1	Нет	134	56
2	Дефект внутреннего кольца	134	56
3	Дефект внешнего кольца	134	56
4	Дефект шарика	133	56

Количество кадров для нескольких поднаборов данных

На рис. 3 изображено, что сигналы из набора данных IMS разбиваются (по выделенным признакам) на 4 отдельных кластера, соответствующих 4 типам сигналов в этом наборе данных. Таким образом, каждый временной отрезок сигнала может быть представлен всего 50 признаками. Процедура их нахождения является простой, а сами признаки информативными.

Отметим, что большинство процедур извлечения признаков из сигналов вибрации требуют много времени, сложных и дорогостоящих в вычислительном отношении преобразований и генерируют большое количество признаков. Таким, например, является преобразование Гильберта в сочетании с эмпирическим модовым разложением, когда каждому сигналу в соответствие ставится изображение его спектра Гильберта. Даже если размер этой картинки будет 32×32 пикселя, то количество признаков уже составит 1024, процедура их получения довольно затратная, а далее такие признаки требуют использования мощной сверточной нейронной сети.

Рис. 3. Визуализация признаков с использованием метода понижения размерности РСА

В данной работе, используя 50 признаков, перейдем к этапу обучения классификатора, в качестве которой возьмем простую полносвязную нейронную сеть.

Модель нейронной сети

Поскольку выделенные признаки имеют небольшую размерность, нейронная сеть также имеет максимально простую структуру. Размер входного слоя составляет 50×1, что соответствует размеру признаков, извлеченных ранее. Далее следует выходной слой из 4 нейронов, использующий функцию активации SoftMax для расчета вероятности каждого из 4 возможных исходов.

На рис. 4 показана архитектура нейронной сети.

Рис. 4. Архитектура нейронной сети

Ясно, что ее нельзя упростить, сеть имеет только входной слой из 50 нейронов, каждый из которых соединен с 4 нейронами выходного слоя.

Результаты. Эксперименты проводились на наборе данных IMS, который содержит три поднабора данных. Экспериментальная установка показана на рис. 5. В начале всех записей все подшипники были исправны, данные записывались до их поломки. Набор данных № 1 содержит исправный сигнал, дефект внутреннего кольца и дефект шарика. Набор данных № 2 содержит исправный сигнал и дефект внешнего кольца. Набор данных № 3 содержит исправный сигнал и дефект внешнего кольца.

Рис. 5. Компоновка испытательного стенда IMS

Характеристики набора данных:

• скорость двигателя поддерживалась постоянной на уровне 2000 об./мин.;

• на вал и подшипник действует радиальная нагрузка в 6000 фунтов;

• каждый набор данных содержит сигнала с подшипника от его нормального состояния до появления дефекта и состоит из отдельных файлов, представляющих собой 1-секундные отрезки сигнала вибрации с частотой дискретизации 20480 Гц, записанные с определенными интервалами.

В этом эксперименте мы брали сигналы каждого типа дефекта длительностью 20 секунд, как это было сделано в статье [11].

Для нормальных условий были выбраны первые 20 файлов 1-го набора данных для подшипника № 1. Для сигнала с дефектом внутреннего кольца мы взяли последние 20 файлов 1-го набора данных для подшипника № 3. Для сигнала с дефектом шарика были взяты последние 20 файлов 1-го набора данных для подшипника № 4. Для сигнала с дефектом внешнего кольца были взяты 20 файлов (с 2004-04-17 21:52:55 до 2004-04-18 01:02:55) 3-го набора данных. Мы повторили метод сегментации сигнала, использованный в [12] [13], для набора данных СWRU, чтобы увеличить объем выборки.

Каждый сегмент сигнала содержит 4260 отсчетов, что эквивалентно 4260/20480 = 0,208 секунды, с процентом перекрытия 50%, т. е. 2130 отсчетов. Количество сегментов сигнала, полученных для каждого поднабора данных после процесса сегментации приведено в Таблица 1.

Методом, предложенным в этой статье, мы получили 100% точность в классификации дефектов подшипников. Отметим, что для создания обучающего набора в режиме скользящего окна с перекрытием мы использовали первые 70% временного ряда, а оставшиеся 30% были использованы для создания соответствующего тестового набора. При этом, тренировочный и тестовый наборы не содержат похожих образцов (отличающихся сдвигом друг от друга) и тестирование модели происходит «честно».

Отметим, что аналогичный эксперимент с этим набором данных был проведен в [11], где авторы также работали с 20-секундными данными. Наилучшая точность, полученная в [11], составляет 96%, а в данной работе мы достигли 100%.

Заключение. В статье разработан новый подход к диагностике подшипников качения, который основан на выделении признаков из спектра его вибрационных сигналов. Разделяя спектр на 50 равных интервалов, а затем вычисляя в каждом интервале отношение максимума к минимуму, мы получаем вектор признаков размером 50×1. Этот вектор отношений затем используется в качестве входного вектора для нейронной сети, которая предсказывает тип неисправности с высокой точностью. Преимущества нашего подхода заключаются в реализации, которая очень простая, а также определении очень информативного признаков, что даже нейронной сети простейшей архитектуры достаточно для эффективного решения задачи классификации дефектов подшипника. Это особенно контрастирует со все более глубокими сверточными и рекуррентными нейронными сетями современных передовых методов аналогов.

СПИСОК ЛИТЕРАТУРЫ

- Yu X. Rolling Bearing Fault Diagnosis Using Modified LFDA and EMD With Sensitive Feature Selection / X. Yu, F. Dong, E. Ding [et al.] — DOI: 10.1109/ACCESS.2017.2773460. — Text : electronic // IEEE Access. IEEE. — 2018. — Vol. 6. — P. 3715-3730.
- Han H. Intelligent vibration signal denoising method based on non-local fully convolutional neural network for rolling bearings / H. Han, H. Wang, Z. Liu [et al.] — DOI: 10.1016/j.isatra.2021.04.022. — Text : electronic // ISA Trans. Elsevier. — 2022. — Vol. 122. — P. 13-23.
- Li D. Z. An Enhanced Bispectrum Technique With Auxiliary Frequency Injection for Induction Motor Health Condition Monitoring / D. Z. Li, W. Wang, F. Ismail. — DOI: 10.1109/TIM.2015.2419031. — Text : electronic // IEEE Trans. Instrum. Meas. IEEE. — 2015. — Vol. 64, № 10. — P. 2679-2687.
- Wang W. J. Early detection of gear failure by vibration analysis i. calculation of the time-frequency distribution / W. J. Wang, P. D. McFadden. — DOI: 10.1006/mssp.1993.1008. — Text : electronic // Mech. Syst. Signal Process. Elsevier. — 1993. — Vol. 7, № 3. — P. 193-203.
- Mukhopadhyay S. Condition Monitoring of Ball Bearings Based on Machine Learning with Synthetically Generated Data / S. Mukhopadhyay, N. Cennamo, M. J. Deen [et al.]. — DOI: 10.3390/S22072 490. — Text : electronic // Sensors. — 2022. — Vol. 22, № 7. — P. 2490.
- Grover C. A novel fault diagnostic system for rolling element bearings using deep transfer learning on bispectrum contour maps / C. Grover, N. Turk. — DOI: 10.1016/j.jestch.2021.08.006. — Text : electronic // Eng. Sci. Technol. an Int. J. Elsevier. — 2022. — Vol. 31. — P. 101049.
- Zhang K. A hybrid deep-learning model for fault diagnosis of rolling bearings in strong noise environments / K. Zhang. — DOI: 10.1088/1361-6501/AC4A18. — Text : electronic // Meas. Sci. Technol. IOP Publishing. — 2022. — Vol. 33, № 6. — P. 065103.

- Yuan Z. Bearing fault diagnosis using a speed-adaptive network based on vibro-speed data fusion and majority voting / Z. Yuan, Z. Ma, X. Li [et al.] — DOI: 10.1088/1361-6501/AC46EE. — Text : electronic // Meas. Sci. Technol. IOP Publishing. — 2022. — Vol. 33, № 5. — P. 055112.
- Chen Z. Rolling Bearing Fault Diagnosis Using Time-Frequency Analysis and Deep Transfer Convolutional Neural Network / Z. Chen, J. Cen, J. Xiong. — DOI: 10.1109/ACCESS.2020.3016888. — Text : electronic // IEEE Access. Institute of Electrical and Electronics Engineers Inc. — 2020. — Vol. 8. — P. 150248–150261.
- 10. Prognostics Center of Excellence. Data Repository. URL: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository /#bearing (accessed: 21.01.2022). Text : electronic.
- Zhang R. Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence / R. Zhang, Z. Peng, L. Wu [et al.]. — DOI: 10.3390/s17030549. — Text : electronic // Sensors. — 2017. — Vol. 17, № 3. — P. 549.
- Xu Y. A hybrid deep-learning model for fault diagnosis of rolling bearings / Y. Xu, Z. Li, S. Wang [et al.] — DOI: 10.1016/j.measurement. 2020.108502. — Text : electronic // Measurement. Elsevier. — 2021. — Vol. 169. — P. 108502.
- Huang M. Fault diagnosis of rolling bearing based on empirical mode decomposition and convolutional recurrent neural network / M. Huang, T. Huang, Y. Zhao [et al.]. DOI: 10.1088/1757-899X/1043/4/042015. Text : electronic // IOP Conf. Ser. Mater. Sci. Eng. IOP Publishing. 2021. Vol. 1043, № 4. P. 042015.

Д. М. ШАХОД, О. Л. ИБРЯЕВА

Южно-Уральский государственный университет, г. Челябинск

УДК 004.032.26, 004.048

НЕЙРОСЕТЕВОЙ АЛГОРИТМ ПОДАВЛЕНИЯ ЭХА В УСЛОВИЯХ ДВОЙНОГО РАЗГОВОРА

Аннотация. В работе решается задача подавления акустического эха в условиях двойного разговора на основе нейронной сети, оценивающей идеальную двоичную маску IBM из признаков, извлеченных из смеси сигналов ближнего и дальнего конца. Новизна предложенного метода заключается