На правах рукописи

Колмаков Эдуард Эдуардович

ГЕТЕРОЗАМЕЩЕННЫЕ АРОМАТИЧЕСКИЕ АМИНЫ В КОМПЛЕКСАХ С ВОДОРОДНОЙ СВЯЗЬЮ С РАЗЛИЧНЫМИ ПРОТОНОАКЦЕПТОРАМИ В РАСТВОРАХ.

Специальность 02.00.04 - физическая химия

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Тюмень - 2006

Работа выполнена на кафедре химической физики Государственного образовательного учреждения высшего профессионального образования «Тюменский государственный университет» Министерства образования и науки Российской Федерации.

Научный руководитель:	доктор физико-математических наук, профессор Борисенко Валерий Евгеньевич
Официальные оппоненты:	доктор химических наук Ушкалова Валентина Николаевна
	кандидат физико-математических наук Третьяков Петр Юрьевич
Ведущая организация:	Научно-исследовательский институт физики им. В.А. Фока Санкт-Петербургского

Защита состоится 23 ноября 2006 г. в 17:00 на заседании диссертационного совета К212.274.04 при Тюменском государственном университете по адресу: 625003, г. Тюмень, ул. Перекопская, 15-а, ауд. 118.

государственного университета.

С диссертацией можно ознакомиться в библиотеке Тюменского государственного университета.

Автореферат разослан "20" октября 2006 г.

Ученый секретарь Диссертационного совета кандидат химических наук

Т.П. Котова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Гетероциклические ароматические амины играют важную роль в живой и неживой природе. Они участвуют в процессах жизнедеятельности как активные фрагменты природных соединений, находят широкое применение в производстве синтетических лекарственных препаратов, искусственных красителей, пластических масс, гербицидов, ядохимикатов.

Химическая активность гетероциклических ароматических аминов существенно зависит от природы, положения и числа гетероатомов в ароматическом кольце. Межмолекулярные взаимодействия ароматических аминов во многом определяются механизмом водородной связи, поэтому исследование особенностей этого механизма представляется актуальным.

В качестве объектов для исследования выбраны 2-аминопиразин, 3-амино-1,2,4-триазин, 2-аминотиазол и 2-аминобензотиазол.

Пиразины и триазины относятся к фармакологически важному классу химических соединений, перспективных для создания нейротропных препаратов для жителей регионов с повышенным уровнем техногенного воздействия.

Аминопиразин входит в состав известного бактерицидного препарата – сульфапиразина, производные триазинов широко применяются в качестве гербицидов, ядохимикатов, в производстве пластических масс.

Тиазольный цикл входит в состав витамина В₁, пенициллина, фермента соединений. Производные тиазола карбоксилазы И других природных используются при синтезе лекарственных препаратов, например, сульфатиазола. Бензотиазолы применяются в производстве цианиновых красителей, обладающих фотосенсибилизирующими свойствами.

Аминопиразины и аминотриазины склонны таутомерии и могут существовать как в амино-, так и в иминоформах. Однако, в обычных условиях равновесие целиком сдвинуто в сторону аминоформы, что создает благоприятные условия для их экспериментального исследования.

Тиазольный цикл по своим реакционным свойствам во многом сходен с пиридином. Среди аминопроизводных тиазола наиболее известны 2- и 5-аминотиазолы. Аминотиазолы также могут существовать в двух таутомерных модификациях, но с явным преобладанием аминоформы.

В качестве протонодонора в первичных ароматических аминах выступает аминогруппа. Ароматические первичные амины способны образовывать с протоноакцепторами межмолекулярные комплексы состава 1:1 и 1:2, прочность связи в которых существенно зависит от состава комплекса и свойств протоноакцепторов.

Образование комплексов с межмолекулярной Н-связью сопровождается поляризацией электронных оболочек взаимодействующих молекул, что приводит к изменению их силовых полей, геометрических, электрооптических и спектральных характеристик. Изучение динамики спектральных изменений и физических параметров взаимодействующих молекул при переходе от свободных молекул к связанным позволяет установить корреляции между ними и более детально представить особенности механизма межмолекулярного взаимодействия.

Целью работы являются:

- изучение влияния положения, числа и рода гетероатомов в ароматическом кольце на протонодонорную способность в Н-связи, спектральные, геометрические, динамические и электрооптические параметры аминогруппы гетерозамещенных ароматических аминов в свободных молекулах и комплексов состава 1:1 и 1:2 с различными протоноакцепторами в растворах;
- исследование влияния температуры на спектральные характеристики аминогруппы свободных и связанных молекул;
- определение термодинамических характеристик комплексов состава 1:1 и 1:2;
- расчет спектральных характеристик и параметров аминогруппы гетерозамещенных ароматических аминов методами валентно-силового поля и квантовомеханическими методами, сравнительный анализ расчетных и экспериментальных данных;
- установление корреляций между спектральными, геометрическими, динамическими, электрооптическими характеристиками свободных и связанных Н-связью молекул.

Научная новизна:

- 1. В области валентных и деформационных колебаний аминогруппы изучены ИК- спектры свободных и связанных Н-связью (1:1 и 1:2) с различными протоноакцепторами молекул 2-аминопиразина, 3-амино-1,2,4-триазина, 2-аминотиазола и 2-аминобензотиазола. Определены спектральные характеристики полос поглощения: положение первого спектрального момента M⁽¹⁾, «эффективная» полуширина 2(M⁽²⁾)^{1/2}, интегральная интенсивность M⁽⁰⁾.
- 2. В интервале 285-330К изучено влияние температуры на спектральные характеристики M⁽⁰⁾, M⁽¹⁾, 2(M⁽²⁾)^{1/2} полос поглощения валентных колебаний аминогруппы свободных и связанных Н-связью молекул.
- 3. Определены термодинамические характеристики комплексов состава 1:1 и 1:2, изучена термодинамическая неэквивалентность связей N-H аминогруппы в комплексах различного состава.
- 4. В приближении модели R-NH₂ валентно-силового поля для свободных и связанных H-связью молекул гетерозамещенных ароматических аминов решены колебательная и электрооптическая задачи. Вычислены валентные углы γ(HNH), динамические постоянные K(NH), электрооптические параметры аминогруппы ∂µ/∂q_{NH} (производные дипольного момента по длине связи NH) и ∂µ/∂q'_{NH} (производные по соседней связи)

- 5. Проведен сравнительный анализ влияния положения и числа атомов азота на спектральные характеристики свободных молекул гетерозамещенных ароматических аминов.
- 6. Между спектральными, геометрическими, динамическими и электрооптическими характеристиками свободных и связанных Н-связью молекул установлены линейные корреляции и определены параметры уравнений линейной регрессии.
- 7. Для свободных молекул гетерозамещенных ароматических аминов в приближении DFT B3LYP/6-31G** и ab initio MP2/6-31G** выполнен расчет распределения зарядов на атомах (по Малликену), дипольных моментов молекул, спектральных характеристик аминогруппы. Проведен сравнительный анализ экспериментальных и расчетных величин. Показано качественное согласие между ними.

Практическая значимость работы заключается в обширном систематическом исследовании влияния положения, числа и рода гетероатомов в ароматическом кольце на протонодонорную способность в Н-связи, спектральные характеристики и параметры аминогруппы свободных и связанных Н-связью (1:1 и 1:2) с различными протоноакцепторами молекул ароматических первичных аминов.

Результаты работы позволяют оценить влияние различных факторов на характеристики свободных и связанных молекул, дают объективную оценку сопоставимости результатов эксперимента и квантовомеханических расчетов.

Установленные корреляционные соотношения между спектральными, геометрическими, динамическими и электрооптическими характеристиками аминогруппы комплексов различного состава подтверждают высокую чувствительность указанных характеристик к положению, числу и роду гетероатомов в ароматическом кольце и могут быть использованы для определения параметров аминогруппы свободных и связанных H-связью молекул по измерениям в ИК-области спектра.

Достоверность результатов подтверждается их воспроизводимостью при многократном повторении эксперимента с варьированием концентраций доноров и акцепторов протона в растворах; корректной оценкой погрешности эксперимента; температурной учетом зависимости спектральных характеристик; использованием апробированных расчетной модели И экспериментальных методик; сопоставлением экспериментальных и расчетных данных.

На защиту выносятся:

 результаты исследования влияния температуры на спектральные характеристики полос поглощения валентных колебаний аминогруппы свободных и связанных Н-связью молекул 2-аминопиразина, 3-амино-1,2,4триазина, 2-аминотиазола, 2-аминобензотиазола с различными протоноакцепторами в растворах;

- приоритетные результаты исследований свободных молекул и комплексов с Н-связью состава 1:1 и 1:2 гетерозамещенных ароматических аминов с различными протоноакцепторами;
- сравнительный анализ результатов эксперимента и теоретических расчетов спектральных характеристик и параметров аминогруппы гетерозамещенных ароматических аминов в свободных и связанных Н-связью молекулах.

Апробация работы. Материалы диссертации докладывались и обсуждались на Восьмой Всероссийской научной конференции студентовфизиков и молодых ученых (Екатеринбург, 2002 г.); на Международной конференции «Физико-химические методы в медицинских и биологических исследованиях» (Польша, Вроцлав, 2003 г.); на 17-й Международной школесеминаре «Спектроскопия молекул и кристаллов» (Украина, Крым, Береговое, 2005 г.)

Публикации. По теме диссертации опубликовано 5 работ, в том числе 2 статьи и 3 тезисов докладов на Международных и Российских конференциях.

Структура и объем диссертации. Диссертация состоит из введения, 4-х глав, заключения и списка литературы. Объем диссертации – 131 страница, в том числе 36 рисунков и 18 таблиц расчетных и экспериментальных данных. Список литературы содержит 142 наименования.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении отмечается актуальность темы, сформулирована цель работы, показана научная новизна и практическая значимость проведенных исследований.

Первая глава содержит обзор литературы по теме исследований, в котором:

дан обзор спектроскопических исследований анилина и его замещенных. Обсуждены спектральные изменения, наблюдаемые на полосах поглощения валентных и деформационных колебаний аминогруппы при переходе от свободных молекул к комплексам с Н-связью состава 1:1 и 1:2 с различными протоноакцепторами в растворах. Рассмотрено влияние числа и положения различных заместителей в ароматическом кольце анилина на спектральные, геометрические, динамические, электрооптические и энергетические характеристики аминогруппы.

Рассмотрены спектроскопические исследования свободных и связанных H-связью (1:1 и 1:2) аминопиридинов, аминопиримидинов и их замещенных с различными протоноакцепторами в растворах. Приведены корреляционные соотношения между спектральными, геометрическими, динамическими, электрооптическими и энергетическими характеристиками аминогруппы свободных и связанных молекул. Обращено внимание на общность одних и различие других корреляционных соотношений в зависимости от числа и характера заместителей в пиридиновом кольце. Рассмотрены свойства и структура молекул аминопиразинов, аминотриазинов и аминотиазолов; дан обзор спектроскопических, кристаллографических и теоретических исследований пиразинов, триазинов, тиазолов и близких к ним по структуре соединений. Описаны особенности пространственной изомерии молекул.

Во второй главе описаны методика и техника эксперимента и расчетов.

Экспериментальные исследования выполнены на модернизированном спектрофотометре SECORD-75IR фирмы Carl Zeiss Jena. Запись спектра осуществлялась в оптимальных условиях регистрации, при соответствующем выборе спектральной ширины щели, скорости сканирования и постоянной времени прибора.

Разработана автоматизированная система регистрации и обработки инфракрасных спектров поглощения для серийного спектрофотометра SPECORD -75IR. Приводится схема установки и техническое описание дополнительных узлов, а также способа подключения спектрофотометра к ЭВМ. Дано описание методики математической обработки спектральных контуров, определения спектральных моментов структурированных полос поглощения, а также алгоритмов машинного разделения перекрывающихся полос.

Рассмотрена методика подготовки исследуемых веществ и растворителей для спектроскопических исследований. Основной растворитель – CCl₄. В качестве протоноакцепторов использовались ацетонитрил (CH₃CN), диоксан, тетрагидрофуран (TГФ), диметилформамид (ДМФА), диметилсульфоксид (ДМСО) и гексаметилфосфорамид (ГМФА) протоноакцепторные свойства которых меняются в широких пределах.

Исследована температурная зависимость константы равновесия мономеркомплекс (1:1) гетерозамещенных ароматических аминов с протоноакцепторами и на основании уравнения Вант-Гоффа определены термодинамические характеристики:- Δ H (энтальпия) и Δ S (энтропия) процесса комплексообразования. Энтальпия водородной связи в комплексах состава 1:2 определялась расчетным путем на основании "правила интенсивностей" А.В. Иогансена.

Для свободных и связанных Н-связью молекул гетерозамещенных ароматических аминов в рамках шестикоординатной модели R-NH₂ валентноколебательной рассмотрена методика решения силового поля И электрооптической задач. Приведен обзор наиболее распространенных квантовомеханических методов расчетов молекул.

В третьей главе изучено влияние числа и положения атомов азота в циклическом радикале на характеристики аминогруппы 2-аминопиразина и 3-амино-1,2,4-триазина, табл. 1. Для сравнения приведены данные для анилина, 2-аминопиридина, 2-аминопиримидина [1-3].

7

Таблица 1.

	$\nu_m^{s}(NH_2)$			$\nu_m^{as}(NH_2)$)	
Соединение	$M^{(1)}$	$2(M^{(2)})^{1/2}$	$B \cdot 10^3$	$M^{(1)}$	$2(M^{(2)})^{1/2}$	$B \cdot 10^3$
	(v), (cm ⁻¹)	$(\Delta v_{1/2}),$ (cm ⁻¹)	$(dm^3M^{-1}cm^{-2})$	$(v^{-1}),$ (cm ⁻¹)	$(\Delta v_{1/2}),$ (cm ⁻¹)	$(dm^3M^{-1}cm^{-2})$
Анилин [1]	3393	28	2.86	3476	38	2.91
2-амино- пиридин [2]	3410	32	5.89	3509	39	5.11
2-амино- пиримидин [3]	3430	31	8.92	3540	38	7.26
2-амино- пиразин	3409 (3408)*	23 (20)*	4.80	3511 (3510)*	40 (30)*	4.10
3-амино-1,2,4- триазин	3425 (3425)*	32 (20)*	7.40	3531 (3525)*	40 (30)*	7.70

Спектральные характеристики полос поглощения валентных колебаний $v_m^{s}(NH_2)$ и $v_m^{as}(NH_2)$ аминогруппы ароматических первичных аминов в CCl₄ (T= 298 K).

*- положения максимумов и полуширины полос, определенные непосредственно из спектра.

Переход от анилина к 2-аминопиридину сопровождается смещением полос валентных колебаний аминогруппы в высокочастотную область спектра, увеличением их интегральной интенсивности и "эффективной" полуширины 2(M⁽²⁾)^{1/2}. Введение в орто-положение относительно аминогруппы второго атома азота (2-аминопиримидин) приводит к дальнейшему высокочастотному сдвигу полос и возрастанию их интегральной интенсивности. При этом наблюдается практически аддитивное их увеличение. Близкими по величине спектральные характеристики 2-аминопиридина оказываются И 2-аминопиразина, а также, соответственно, 2-аминопиримидина и 3-амино-1,2,4-триазина. Это позволяет сделать вывод о том, что наибольшее влияние на спектральные характеристики аминогруппы свободных гетерозамещенных аминов оказывают атомы азота, находящиеся относительно нее в ортоположении.

Произведен расчет распределения зарядов (по Малликену) на атомах 2аминопиразина и 3-амино-1,2,4-триазина в приближении DFT-B3LYP/6-31G** и ab initio MP2/6-31G** (рис. 1, 2). Введение в орто-положение относительно аминогруппы второго атома азота (переход от 2-аминопиразина к 3-амино-1,2,4-триазину) приводит к заметным изменениям в распределении зарядов на аминогруппе и в ароматическом кольце. Эти изменения должны привести к способности протонодонорной 3-амино-1,2,4-триазина увеличению по сравнению с 2-аминопиразином, увеличению силовых постоянных К(NH), валентных колебаний и увеличению повышению частот интегральных $\nu_{\rm m}^{\rm as}(\rm NH_2),$ $\nu_{\rm m}^{\rm s}(\rm NH_2)$ интенсивностей полос И ЧТО соответствует

8

экспериментальным данным, табл. 1, и подтверждается квантовомеханическими расчетами, табл. 2.

Рис. 1. Схема распределения заряда на атомах молекулы 2-аминопиразина (по Малликену). а) DFT-B3LYP/6-31G**. b) MP2/6-31G**.

Рис. 2. Схема распределения заряда на атомах молекулы 3-амино-1,2,4-триазина (по Малликену). а) DFT-B3LYP/6-31G**. b) MP2/6-31G**.

На рис. З приведены полосы поглощения валентных колебаний аминогруппы недейтерированных (R-NH₂)(1,3) и частично-дейтерированных (R-NHD и R-ND₂) (2,4) по аминогруппе молекул 2-аминопиразина (1,2) и 3-амино-1,2,4-триазина (3,4). Ожидаемого вследствие неэквивалентности связей NH аминогруппы расщепления полос поглощения v(NH) и v(ND) в изотопических молекулах R-NHD визуально не наблюдается. Это позволяет

сделать вывод о том, что неэквивалентность связей NH аминогруппы в этих соединениях достаточно мала.

Квантовомеханические методы (табл. 2) дают для 3-амино-1,2,4-триазина интегральные интенсивности B_m^s и B_m^{as} примерно в два раза больше, чем для 2-аминопиразина, что подтверждается экспериментом (табл. 1).

Экспериментальные дипольные моменты μ_0 исследуемых соединений в бензоле равны соответственно: $\mu_0=1.97D$ (2-аминопиразин), $\mu_0=2.64D$ (3-амино-1,2,4-триазин) [4], что достаточно близко к расчетным величинам μ_0 для свободных молекул (табл. 2).

Таблица 2.

Параметры аминогруппы гетерозамещенных ароматических аминов, вычисленные в приближениях DFT-B3LYP/6-31G** и MP2/6-31G** (нумерация атомов соответствует рис. 1, 2).

Соединение	Параметр	DFT-B3LYP/6-31G**	MP2/6-31G**
2-амино-	$r(H_7H_8),A$	1.00855	1.00800
пиразин	r(H7H9),A	1.01012	1.00935
	$\gamma(H_8N_7H_9), (^{\circ}).$	115.41	113.30
	$K_1(N_7H_8), 10^6 \text{ cm}^{-2}$	11.60482	11.94837
	$K_2(N_7H_9), 10^6 \text{ cm}^{-2}$	11.50518	11.87140
	$K_{\gamma}, 10^6 \text{ cm}^{-2}$	0.847	0.944
	$v^{s}(NH_{2}), cm^{-1}$	3589.7	3642.0
	$v^{as}(NH_2), cm^{-1}$	3713.5	3772.0
	δ (HNH), cm ⁻¹	1655.9	1687.2
	B_{s} , $10^{3} dm^{3} M^{-1} cm^{-2}$	4.23	4.11
	B_{as} , $10^3 dm^3 M^{-1} cm^{-2}$	2.92	2.94
	B_{γ} , 10 ³ dm ³ M ⁻¹ cm ⁻²	23.63	17.42
	μ_0, D	2.09	1.76
3-амино-	r(H ₇ H ₈),A	1.00665	1.00623
1,2,4-триазин	r(H ₇ H ₉),A	1.00717	1.00674
	$\gamma(H_8N_7H_9), (^{\circ}).$	119.66	116.85
	$K_1(N_7H_8), 10^6 \text{ cm}^{-2}$	11.81940	12.14563
	$K_2(N_7H_9), 10^6 \text{ cm}^{-2}$	11.78869	12.11351
	$K_{\gamma}, 10^6 \text{ cm}^{-2}$	0.7539	0.8550
	$v^{s}(NH_{2}), cm^{-1}$	3622.3	3670.8
	$v^{as}(NH_2), cm^{-1}$	3760.5	3812.2
	$\delta(\text{HNH}), \text{ cm}^{-1}$	1650.7	1681.8
	B_{s} , $10^{3} dm^{3} M^{-1} cm^{-2}$	8.79	8.08
	B_{as} , $10^3 dm^3 M^{-1} cm^{-2}$	5.72	5.36
	B_{γ} , $10^3 dm^3 M^{-1} cm^{-2}$	44.94	31.32
	μ ₀ , D	2.47	2.63

Нами исследовано влияние температуры на полосы поглощения валентных колебаний аминогруппы 2-аминопиразина и 3-амино-1,2,4-триазина в комплексах состава 1:1 с различными протоноакцепторами в растворах. Типичные спектральные изменения на полосах валентных колебаний

10

аминогруппы в исследованном температурном интервале представлены на рис. 4.

Рис. 3. Полосы поглощения валентных колебаний аминогруппы недейтерированных (1,3) и частично-дейтерированных (2,4) по аминогруппе молекул 2-аминопиразина (1,2) и 3-амино-1,2,4-триазина (3,4) в CCl₄ (C=0,001M) а)-область v(NH) b)-область v(ND)

Рис. 4. Температурные эффекты на полосах поглощения валентных колебаний аминогруппы комплексов с водородной связью состава 1:1 2-аминопиразина (а), (C_d =0.010M, C_a =0.030M) и 3-амино-1,2,4-триазина (b), (C_d =0.0015M, C_a =0.025M) с ГМФА в CCl₄. 1: 288K, 2: 298K, 3: 308 K, 4: 318K, 5: 318K.

С повышением температуры интенсивность триплетной полосы $v_c(NH)$, основной вклад в которую дает связанная NH-группа, и полосы $v_f(NH)$ (несвязанная NH-группа) комплексов состава 1:1 уменьшается, тогда как интенсивность полос поглощения $v_m^{s}(NH_2)$ и $v_m^{as}(NH_2)$ мономеров закономерно растет. Спектральные характеристики $M_c^{(1)}$, $2(M_c^{(2)})^{1/2}$, B_c полос поглощения $v_c(NH)$ комплексов состава 1:1, также, как и мономеров, зависят от температуры практически линейно. Параметры уравнений линейной регрессии приведены в табл. 3.

Таблица 3.

Параметры уравнений линейной регрессии Y=aT+b спектральных характеристик полос поглощения $v_c(NH)$ комплексов с H-связью состава 1:1 2-аминопиразина и 3-амино-1,2,4-триазина с различными протоноакцепторами в CCl₄ (Y= $M_c^{(1)}$, 2($M_c^{(2)}$)^(1/2), B_c ; r – коэффициент корреляции).

Донор	Акцеп-	$M_c^{(1)}$			$2(M_c^{(2)})$	(1/2)		B _c		
протона	тор протона	a (cm ⁻¹ K ⁻¹)	b (cm ⁻¹)	r	a (cm ⁻¹ K ⁻¹)	b (cm ⁻¹)	r	a (dm ³ M ⁻¹ cm ⁻² K ⁻¹)	b $(dm^3 M^{-1} cm^{-2})$	r
2-амино пиразин	Диок- сан	0.122	3322.8	0.847				-150.6	65624	0.887
-	ΤΓΦ	0.159	3258.8	0.969				-164.5	89387	0.803
	ДМФА	0.202	3249.7	0.891	-0.113	173.2	0.859	-172.0	79654	0.962
	ДМСО	0.223	3212.7	0.922	-0.132	175.4	0.949	-328.9	133446	0.955
	ГМФА	0.245	3166.3	0.941	-0.152	180.4	0.927	-441.4	175265	0.931
3-амино- 1,2,4- триазин	ДМФА ДМСО ГМФА	0.282 0.329 0.551	3201.9 3173.6 3031.9	0.889 0.800 0.937	-0.238 -0.282 -0.446	217.1 240.9 295.8	0.682 0.965 0.981	-624.3 -655.0 -937.7	254291 285018 369649	0.928 0.892 0.993

При переходе от аминопиридинов к 2-аминопиразину и 3-амино-1,2,4триазину параметр $a=\partial M^{(1)} / \partial T$ возрастает, тогда как при переходе к аминопиримидинам – уменьшается. Таким образом, существенное влияние на эти закономерности оказывает не только число, но и взаимное расположение гетероатомов в ароматическом кольце.

На рис. 5 показаны изменения, наблюдаемые на полосах поглощения валентных колебаний аминогруппы комплексов состава 1:1 при ассоциации 2-аминопиразина и 3-амино-1,2,4-триазина с протоноакцепторами: CH₃CN, диоксан, ТГФ, ДМФА, ДМСО, ГМФА в CCl₄.

Увеличение прочности Н-связи в указанном ряду протоноакцепторов увеличением смещения $v_{\rm c}(\rm NH)$ сопровождается полос И $v_{\rm f}(\rm NH)$ В низкочастотную область спектра. Относительное смещение полос комплексов состава 1:1 для 3-амино-1,2,4-триазина больше, чем для 2-аминопиразина, что свидетельствует в пользу большей протонодонорной способности 3-амино-1,2,4-триазина по сравнению с 2-аминопиразином. На рис. 6 приведены полосы поглощения валентных колебаний аминогруппы комплексов состава 1:2 в апротонных растворителях. Полосы поглощения v_c^s(NH₂) комплексов состава 1:2 проявляются в той же спектральной области, что и v_c(NH) комплексов состава 1:1 и также имеют сложную структуру. Однако, характер спектральных проявлений в комплексах состава 1:1 и 1:2 существенно различается, рис. 5, 6.

Экспериментальные и расчетные частоты нормальных колебаний аминогруппы несвязанных изотопических молекул R-NH₂, R-NHD, R-ND₂ приведены в табл. 4. Хорошее соответствие результатов расчета и эксперимента позволяет надеяться на достаточно корректный выбор геометрических

параметров и силового поля фрагмента R-NH₂ исследуемых молекул. Геометрические, динамические и электрооптические характеристики свободных и связанных (1:1 и 1:2) с протоноакцепторами молекул исследуемых соединений приведены в табл. 5.

Рис. 5. Полосы поглощения валентных колебаний 2-аминопиразина (а) и 3-амино-1,2,4триазина (b) в комплексах с H-связью состава 1:1 с различными протоноакцепторами в CCl₄. a) 1:CCl₄ (C_d=0.010M); 2:CH₃CN (C_a=0.5M); 3:TГФ (C_a=0.3M); 4:ДМФА (C_a=0.15M); 5:ДМСО (C_a=0.10M); 6:ГМФА (C_a=0.025M);

b) 1:CCl₄ (C_a=0.0015M); 2:CH₃CN (C_a=0.5M); 3:TГФ (C_a=0.3M); 4:ДМФА (C_a=0.15M); 5:ДМСО (C_a=0.10M); 6:ГМФА (C_a=0.025M);

Рис. 6. Полосы поглощения валентных колебаний аминогруппы 2-аминопиразина и 3-амино-1,2,4-триазина в комплексах с водородной связью состава 1:2 с различными протоноакцепторами.

a) 2-аминопиразин: 1:CCl₄ (C=0.015 M); 2:CH₃CN (C=0.096 M); 3:Диоксан (C=0.12 M); 4: ТГФ (C=0.07 M); 5:ДМФА (C=0.21 M); 6:ДМСО (C=0.20 M); 7: ГМФА (C=0.11 M); b) 3-амино-1,2,4-триазин: 1:CCl₄ (C=0.0015 M); 2:CH₃CN (C=0.0039 M); 3:Диоксан (C=0.018

М); 4: ТГФ (С=0.016 М); 5:ДМФА (С=0.086 М); 6:ДМСО (С=0.1 М); 7: ГМФА (С=0.1 М);

Образование комплексов состава 1:1 сопровождается уменьшением, по сравнению со свободными молекулами в CCl₄, силовой постоянной K₁(NH)

(~на 10-15%) и небольшим (<1%) увеличением силовой постоянной K₂(NH) несвязанной NH-группы.

Силовые постоянные K(NH) комплексов состава 1:2 больше, чем K₁(NH) комплексов состава 1:1, что свидетельствует о более прочной H-связи в комплексах 1:1 по сравнению с 1:2.

Таблица 4.

ізина для изото	пических	MUJICKYJI IX-13112	$2, \mathbf{K}$ -111D M	K-ND ₂ B CC	14.
Соелинение	Амино-	Отнесение	v _{эксп.}	v_{pac_2}	$\Delta v = v_{3\kappa cn_2} - v_{pac}$
Соединение	группа	полос	(cm^{-1})	(cm^{-1})	(cm^{-1})
2-амино-	-NH ₂	$M_{s}^{(1)}(NH_{2})$	3409	3409	0
пиразин		$M_{as}^{(1)}(NH_2)$	3511	3511	0
		δ(HNH)	1605	1605	0
	-NHD	$\nu(NH)$	3461	3463	-2
		v(ND)	2551	2550	1
		δ(HND)	1471	1468	3
	-ND ₂	$v_{s}(ND_{2})$	2476	2489	-13
		$v_{as}(ND_2)$	2621	2616	5
		δ(DND)		1207	
3-амино-	-NH ₂	$M_{s}^{(1)}(NH_{2})$	3425	3425	0
1,2,4-триазин		$M_{as}^{(1)}(NH_2)$	3531	3531	0
		δ(HNH)	1618	1618	0
	-NHD	v(NH)	3483	3481	2
		v(ND)	2571	2564	7
		δ(HND)	1477	1482	-5
	-ND ₂	$v_{s}(ND_{2})$	2498	2500	-2
		$v_{as}(ND_2)$	2639	2632	7
		$\delta(DND)$	1195	1216	-21

Частоты	нормальных	колебаний	аминогруппы	2-аминопиразина	И	3-амино-1,2,4-
триазина	для изотопиче	еских молеку	л R-NH ₂ , R-NH	DиR-ND ₂ в CCl ₄ .		

Между положением спектрального момента $M^{(1)}_{c}$ и параметром $(K_1(NH))^{1/2}$ комплексов состава 1:1 2-аминопиразина и 3-амино-1,2,4-триазина с протоноакцепторами существует линейная корреляция:

 $M_{c}^{(1)}(1:1)=0.96364(K_{1}(NH))^{1/2}+213.7; n=8, r=0.9996$ (1) Для о- и m- аминопиридинов [2] эта зависимость имеет вид:

 $M^{(1)}_{c}(1:1)=0.9490(K_1(NH))^{1/2}+260.9; n=6, r=0.9990$ (2) Для аминопиримидинов [3]:

 $M_{c}^{(1)}(1:1)=0.89703(K_{1}(NH))^{1/2}+432,3; n=6, r=0.9570$ (3)

Между спектральными моментами $M^{(1)}_{s}$, $M^{(1)}_{as}$ свободных молекул 2аминопиразина и 3-амино-1,2,4-триазина в CCl₄ и комплексов состава 1:2 с протоноакцепторами, с одной стороны, и параметром $(K_1(NH))^{1/2}$, с другой, также существует общая линейная корреляция:

 $M_{as}^{(1)}(\text{free, 1:2})=1.2183(K_1(\text{NH}))^{1/2}+664.9; n=10, r=0.9976$ (4) $M_{as}^{(1)}(\text{free, 1:2})=0.84519(K_1(\text{NH}))^{1/2}+687.3; n=10, r=0.9970$ (5)

При переходе от свободных молекул к комплексам состава 1:2 валентный угол γ(HNH) возрастает, табл. 5. При этом между спектральной разностью ΔM=

M⁽¹⁾_{as} - M⁽¹⁾_{as} свободных молекул и комплексов состава 1:2 и величиной валентного угла у(HNH) имеется линейная зависимость:

$$\Delta M$$
(free, 1:2)=3.244 γ (HNH) – 255.4; n=9, r=0.9925

Таблица 5.

(6)

Геометрические, динамические и электрооптические характеристики аминогруппы 2аминопиразина и З-амино-1,2,4-триазина в комплексах с Н-связью состава 1:1 и 1:2 исследуемых соединений с различными протоноакцепторами.

Донор	Акцеп-	Компле	ксы 1:1				Компле	ексы 1:2		
Прото- на	тор Прото- на	$K_1(NH)$ $\cdot 10^{-6}$ (cm^{-2})	$K_2(NH) \cdot 10^6 (cm^{-2})$	$\partial \mu_l / \partial q_l$ (DA ⁻¹)	$\partial \mu_2 / \partial q_2$ (DA ⁻¹)	∂µ/∂qi (DA ⁻¹)	K(NH) $\cdot 10^{-6}$ (cm^{-2})	γ(HNH) (°)	∂µ/∂q (DA ⁻¹)	∂µ/∂q́ (DA ⁻¹)
2-	CCl ₄						11.186	110.0	1.35	0.31
амино	CH ₃ CN						10.889	114.5	3.81	1.41
пира- зин	Диок- сан	10.668	11.243	3.06	1.26	0.38	10.680	120.1	4.83	2.09
	TΓΦ	10.289	11.270	4.10	1.22	0.39	10.553	123.4	6.32	3.17
	ДМФА	10.318	11.263	3.47	1.39	0.27	10.483	124.4	6.75	3.26
	ДМСО	10.124	11.266	3.83	1.35	0.31				
	ΓΜΦΑ	9.855	11.241							
3-	CCl ₄						11.288	111.0	1.76	0.33
амино-	CH ₃ CN						10.939	112.4	4.64	1.54
1,2,4- триа-	Диок- сан						10.613	122.8	6.42	3.05
ЗИН	TΓΦ						10.498	124.0	7.20	3.69
	ДМФА	10.155	11.370	5.30	1.57	0.50	10.361	122.6	7.37	3.58
	ДМСО	9.870	11.337	5.99	1.34	0.74				
	ΓΜΦΑ	9.587	11.343	6.00	1.34	0.81				

Электрооптические параметры $\partial \mu_1 / \partial q_1$ (1:1) и $\partial \mu / \partial q$ (1:2), табл. 5, с увеличением прочности Н-связи в ряду протоноакцепторов: диоксан, ТГФ, ДМФА, увеличиваются. При этом $\partial \mu / \partial q$ (1:2) значительно больше $\partial \mu_1 / \partial q_1$ (1:1). Образование комплексов состава 1:1 приводит к небольшому, по сравнению со свободными молекулами, увеличению электрооптического взаимодействия связей (параметр $\partial \mu / \partial q'$ свободных молекул и $\partial \mu_i / \partial q_i$ комплексов 1:1). В комплексах состава 1:2 электрооптическое взаимодействие связей существенно больше и в указанном ряду протоноакцепторов закономерно возрастает. Зависимость параметров $\partial \mu / \partial q$ и $\partial \mu / \partial q'$ свободных молекул и комплексов состава 1:2 2-аминопиразина и 3-амино-1,2,4-триазина с протоноакцепторами от (K₁(NH))^{1/2} аппроксимируется линейными уравнениями:

 $\partial \mu / \partial q$ (free, 1:2)= -4.434·10⁻² (K(NH))^{1/2}+150.5; n=10, r=0.9700 $\partial \mu / \partial q'$ (free, 1:2)= -2.653·10⁻² (K(NH))^{1/2}+89.2; n=10, r=0.9770 (7)

(8)

Для комплексов состава 1:1 исследована зависимость константы равновесия мономер-комплекс от температуры и, на основании уравнения Вант-Гоффа, вычислены термодинамические характеристики процесса комплексообразования: энтальпия - ΔH_1 и энтропия ΔS_1 . Определены константы равновесия K_{298} (табл. 6). Обращает на себя внимание большая (3.8 ккал/моль) величина - ΔH_1 для комплексов 1:1 2-аминопиразина с ТГФ по сравнению с ДМФА (2.8 ккал/моль) и даже с ДМСО (2.9 ккал/моль). Для комплексов 1:1 с участием диоксана, ДМФА и ДМСО величины - ΔH_1 примерно одинаковы, табл. 6. Этот факт можно объяснить существенным вкладом в образование комплексов состава 1:1 2-аминопиразина с диоксаном и ТГФ переноса заряда по водородному мостику [3]. Энтальпия H-связи в комплексах состава 1:2 значительно меньше, чем в комплексов состава 1:1 и 1:2 (табл. 5).

Таблица 6.

		- P P			
Донор протона	Акцептор	- Δ H ₁ (эксп.)	$-\Delta S_1$	$-\Delta H_2$	K_{298}
ri - F - F - F	протона	(Ккал М ⁻¹)	(кал М ⁻¹ К ⁻¹)	(Ккал М ⁻¹)	$(dm^{-}M^{+})$
2-амино-	Диоксан	2.80	9.00	2.05	1.30
пиразин	ΤΓΦ	3.73	14.6	1.93	1.10
	ДМФА	2.76	2.35	1.90	7.80
	ДМСО	2.93	3.72		11.8
	ΓΜΦΑ	4.52	5.74		36.7
3-амино-1,2,4-	ДМФА	3.71	5.55	1.75	3.29
триазин	ДМСО	3.92	8.12		6.70
	ГМФА	4.97	8.79		25.99

Термодинамические характеристики комплексов с Н-связью состава 1:1 и 1:2 2аминопиразина и 3-амино-1,2,4-триазина с различными протоноакцепторами в CCl₄.

В четвертой главе приведены результаты исследований 2-аминотиазола и 2-аминобензотиазола. Проведено сопоставление спектральных характеристик соединений с другими ароматическими аминами: анилином, 2-аминопиридинами, 2-аминопиридинами, 2-аминопиризином, 3-амино-1,2,4-триазином.

Параметры уравнений линейной регрессии Y=aT+B (Y=M_m⁽¹⁾,2(M_m⁽²⁾)^{1/2}, В_m) приведены в табл. 7, спектральные характеристики аминогруппы 2-аминотиазолов при комнатной температуре – в табл. 8.

Спектры изотопических молекул 2-аминотиазолов в CCl₄ показаны на рис. 7. Отнесение полос аминогруппы соединений R-NH₂, R-NHD, R-ND₂ приведено в табл. 9.

Из рис. 7 видно, что полосы поглощения v(NH) и v(ND) изотопических молекул R-NHD обоих соединений имеют дублетную структуру, что свидетельствует о заметной неэквивалентности связей NH аминогруппы в 2-аминотиазолах.

Для свободных молекул 2-аминотиазолов в рамках модели R-NH₂ валентно-силового поля решены колебательная и электрооптическая задачи. Рассчитаны спектральные моменты M⁽¹⁾, силовые постоянные K(NH),

валентные углы γ (HNH), нормированные коэффициенты формы нормальных колебаний и электрооптические параметры $\partial \mu / \partial q$ и $\partial \mu / \partial q'$ (табл. 9, 10).

Рис. 7. Полосы поглощения валентных колебаний аминогруппы недейтерированных (1,3) и частично-дейтерированных по аминогруппе (2,4) молекул 2-аминотиазола (1,2) и 2-аминобензотиазола (3,4) в CCl₄.

Таблица 7.

Параметры уравнений линейной регрессии Y=aT+b спектральных характеристик полос поглощения аминогруппы 2-аминотиазолов в CCl₄ (Y= $M_m^{(1)}$, 2($M_m^{(2)}$)^(1/2), B_m ; r – коэффициент корреляции) в температурном интервале 288-328 К.

· · · · · ·	- I I	1)		J I -	- 1-			-		
Соединение	Отнесение	$M_m^{(l)}$			$2(M_m^{(2)})$) ^(1/2)		B _m		
	полос	a, (cm ⁻¹ K ⁻¹)	b (cm ⁻¹)	r	a, (cm ⁻¹ K ⁻¹)	b (cm ⁻¹)	r	$a_{,}$ $(dm^{3}M^{1}$ $cm^{-2}K^{-1})$	b, $(dm^{3}M^{1}$ $cm^{-2})$	r
2-амино-	v ^s (NH ₂)	0.023	3389.7	0.873	-0.071	58.6	0.709	-29.0	13912	0.982
тиазол	$v^{as}(NH_2)$	0.073	3470.9	0.924	-0.188	103.5	0.991	-36.6	16133	0.986
2-амино-	$v^{s}(NH_{2})$	0.037	3390.5	0.651	-0.084	59.6	0.960	-24.8	15615	0.979
бензотиазол	$v^{as}(NH_2)$	0.068	3478.9	0.782	-0.059	60.9	0.744	-38.6	18261	0.991

Таблица 8.

Спектральные характеристики полос поглощения валентных колебаний $v_m^{s}(NH_2)$ и $v_m^{as}(NH_2)$ аминогруппы 2-аминотиазолов в CCl₄ (T= 298 K)

Соединение	$\nu_m^{s}(NH_2)$			$\nu_m^{as}(NH_2)$		
	$M_{m}^{(1)}(v^{s}),$	$2(M_m^{(2)})^{1/2}$	$B_m^{s} \cdot 10^3$	$M_{m}^{(1)}(v^{as}),$	$2(M_m^{(2)})^{1/2}$	$B_m^{s} \cdot 10^3$
	(cm^{-1})	$(\Delta v_{1/2}^{s}), (cm^{-1})$	$(dm^3M^1cm^{-2})$	(cm^{-1})	$(\Delta v^{as}_{1/2}), (cm^{-1})$	$(dm^3M^1cm^2)$
2-амино-	3394	37	5.28	3491	47	5.24
тиазол	(3394)*	(20)*		(3491)*	(29)*	
2-амино-	3399	33	8.22	3497	42	6.76
бензотиазол	(3398)*	(21)*		(3498)*	(33)*	

* - Положения максимумов и полуширины полос, определенные непосредственно из спектра.

Таблица 9.

аминогруппы 2-аминотиазолов и их деитероаналогов (к-NHD, к-ND2) в CCI4.												
Соединение	Отнесение	$v_{3\kappa c \pi}$,	$v_{pac.}$	$\Delta v = v_{3KCT.}$ -	Hoj	рмировані	ные					
	Полос	(cm^{-1})	(cm^{-1})	$v_{\text{pac.}}, (\text{cm}^{-1})$	коээф	ициенты (рормы					
				1	q_1	q_2	γ					
2-минотиазол	$M_{s}^{(1)}(NH_{2})$	3394	3494	0	0.7238	0.7238	-0.0309					
-NH ₂	$M_{as}^{(1)}(NH_2)$	3491	3491	0	0.7422	-0.7422	-0.0000					
	δ(HNH)	1598	1598	0	0.0251	0.0251	-1.5357					
-NHD	v(NH)	3435	3444	-9	1.0361	-0.0593	-0.0393					
	v(ND)	2538	2537	1	0.0454	0.7639	-0.0575					
	δ(HND)	1469	1461	8	0.0056	0.0179	-1.2634					
-ND ₂	$v_{s}(ND_{2})$	2480	2479	1	0.5297	0.5297	-0.1103					
	$v_{as}(ND_2)$	2611	2599	12	0.5541	-0.5541	-0.0000					
	$\delta(DND)$	1172	1200	28	0.0058	0.0058	-1.1148					
2-амино-	$M_{s}^{(1)}(NH_{2})$	3399	3339	0	0.7237	0.7237	-0.0316					
бензотиазол	$M_{as}^{(1)}(NH_2)$	3497	3497	0	0.7424	-0.7424	-0.0000					
-NH ₂	δ(HNH)	1613	1613	0	0.0240	0.0240	-1.5275					
-NHD	v(NH)	3442	3450	-8	1.0361	-0.0599	-0.0393					
	v(ND)	2536	2541	-5	0.0459	0.7639	-0.0586					
	δ(HND)	1454	1479	-25	0.0044	0.0163	-1.2468					
-ND ₂	$v_{s}(ND_{2})$	2485	2483	2	0.5296	0.5296	-0.1108					
	$v_{as}(ND_2)$	2621	2605	16	0.5542	-0.5542	-0.0000					
	$\delta(DND)$		1212		0.0048	0.0048	-1.1079					

Частоты и нормированные коэффициенты формы нормальных колебаний аминогруппы 2-аминотиазолов и их лейтероаналогов (R-NHD, R-ND) в ССL.

Таблица 10.

Динамические и электрооптические характеристики комплексов с Н-связью состава 1:1 и 1:2 2-аминотиазолов с различными протоноакцепторами.

1.1 H 1.4		เหลวบมบเ	ь с разли		протоно	акцепт	opamn.			
Донор	Акцеп-	Компле	ексы 1:1				Компле	ксы 1:2		
прото- на	тор протона	$\frac{\text{K}_{l}(\text{NH})}{\cdot 10^{6}}$ (cm ⁻²)	$K_2(NH)$ $\cdot 10^6$ (cm^2)	$\partial \mu_1 / \partial q_1$ (DA ⁻¹)	∂µ₂/∂q₂ (DA ⁻¹)	∂µ/∂qi (DA ⁻¹)	$K(NH) -10^{6}$ (cm ⁻²)	γ(HNH) (°)	∂µ/∂q (DA ⁻¹)	∂µ/∂q (DA ⁻¹)
2-	CCl ₄						11.056	109.0	1.45	0.26
амино	CH ₃ CN						10.807	114.2	3.82	1.20
тиазол	Диоксан	10.257	11.185	3.05	1.37	0.35	10.529	116.7	4.98	1.62
	ΤΓΦ	10.196	11.165	3.66	1.46	0.25	10.398	119.6	6.08	2.34
	ДМФА	10.116	11.169	4.02	1.19	0.50	10.279	120.8	6.45	2.71
	ДМСО	9.902	11.176	4.27	1.18	0.54				
	ΓΜΦΑ	9.601	11.171	4.76	0.96	0.28				
2-	CCl ₄						11.091	109.3	1.71	0.39
амино-	CH ₃ CN						10.756	111.5	4.89	1.50
бензо-	Диоксан	10.114	11.230	4.84	1.67	0.37	10.374	120.5	5.72	2.22
тиазол	ΤΓΦ	9.998	11.211	5.16	1.69	0.41	10.314	122.7	6.57	2.82
	ДМФА	9.915	11.216	5.39	1.53	0.58	10.219	118.5	6.53	2.60
	ДМСО	9.813	11.207	5.56	1.44	0.69				
	ΓΜΦΑ	9.454	11.214	5.73		0.45				

Как показывают проведенные ранее исследования [5], небольшая (менее 1%) динамическая неэквивалентность связей NH в свободных молекулах практически не сказывается на величине коэффициентов формы нормальных колебаний и электрооптических параметрах $\partial \mu / \partial q$ и $\partial \mu / \partial q'$.

Переход от анилина к 2-аминотиазолу сопровождается увеличением валентного угла γ (HNH)) примерно на 3°, возрастанием силовых постоянных К(NH) и электрооптических параметров $\partial \mu / \partial q$ и $\partial \mu / \partial q'$. Таким образом, в соединениях R-NH₂ тиазольный радикал оказывает на аминогруппу большее поляризующее воздействие, чем фенильный.

В приближении DFT-B3LYP/6-31G** и ab initio MP2/6-31G** произведен расчет распределения зарядов (по Малликену) на атомах свободных молекул 2аминотиазола и 2-аминобензотиазола (рис. 8, 9). Согласно расчетам, на атомах C_2 , C_4 и S_1 тиазольного цикла имеется избыточный положительный заряд, тогда как на атомах N_3 и C_5 – отрицательный. Это подтверждает вывод о существенной делокализации внешних электронов атомов C_2 , C_4 , S_1 , что обуславливает в тиазольном цикле их высокую подвижность. Переход от 2аминотиазола к 2-аминобензотиазолу сопровождается увеличением абсолютной величины заряда на атомах $N_3(-)$, C_2 , $C_4(+)$ и уменьшением зарядов на атомах $S_1(+) C_5(-)$. Полярность аминогруппы при этом также возрастает. Это приводит к повышению частот валентных колебаний аминогруппы, увеличению интегральной интенсивности полос, валентного угла γ (HNH) и дипольного момента μ_0 .

Рис. 8. Схема распределения заряда (по Малликену) на атомах молекулы 2-аминотиазола. a) DFT – B3LYP/6-31G**. b) MP2/6-31G**.

Рис. 9. Схема распределение заряда (по Малликену) на атомах молекулы 2аминобензотиазола. а) DFT – B3LYP/6-31G**. b) MP2/6-31G**.

Нами исследованы комплексы с Н-связью состава 1:1 2-аминотиазолов с различными протоноакцепторами в CCl₄. Спектральные характеристики полос поглощения v_c(NH), v_f(NH) комплексов состава 1:1 2-аминотиазолов с протоноакцепторами приведены в табл. 11.

Таблица 11.

Спектральные характеристики полос поглощения валентных колебаний аминогруппы для комплексов с Н-связью (1:1) 2-аминотиазолов с различными протоноакцепторами в CCl₄ (T=298 K).

Донор	Акцеп-	v _f (NH)		Положение максимумов		$\nu_{c}(NH)$			
прото- на	тор протона	(cm^{-1})	$\begin{array}{c} B_{\rm f} \cdot 10^{-3} \\ (dm^3 \\ M^{-1} \\ cm^{-2}) \end{array}$	полос поглощения в области Ферми- резонанса (cm ⁻¹)			M _c ⁽¹⁾ , (cm ⁻¹)	$2(M_{c}^{(2)})^{1/2},$ (cm ⁻¹)	$\begin{array}{c} B_{c} \cdot 10^{-3} \\ (dm^{3} \\ M^{-1} \\ cm^{-2}) \end{array}$
2-	Диоксан	3477	6.85		3202	3340	3301	151	22.3
амино-	ΤΓΦ	3473	8.51		3200	3325	3292	144	32.0
тиазол	ДМФА	3473	6.72	3127	3190	3335	3280	136	39.6
	ДМСО	3472	6.18	3137	3185	3310	3247	157	45.5
	ГМФА	3469	4.41	3140	3170	3275	3199	169	58.7
2-	Диоксан	3482	10.84		3200 3330		3280	174	56.8
амино-	ΤΓΦ	3478	11.11		3195 3320		3262	168	65.6
бензо-	ДМФА	3478	9.56	3150	3202 3225	3325	3249	174	72.5
тиазол	ДМСО	3476	8.56	3145	3180 3225	3302	3233	177	77.5
	ГМФА	3475	7.45	3126	3170 3225	3275	3175	205	81.5

Из табл. 11 видно, что максимум полосы $v_f(NH)$ комплексов 1:1 2аминотиазолов с протоноакцепторами смещается по отношению к полосе $v_m^{as}(NH_2)$ в низкочастотную область спектра на 20-25 см⁻¹. Интегральная интенсивность полос $v_f(NH)$ в ряду протоноакцепторов: диоксан, ТГФ, ДМФА, ДМСО, ГМФА вначале возрастает, а затем уменьшается. Причем, относительные изменения интегральной интенсивности B_c полос поглощения $v_c(NH)$ 2-аминотиазола происходят гораздо быстрее, чем у 2-аминобензотиазола.

Экспериментальные (табл. 11) и расчетные (табл. 12) частоты валентных колебаний аминогруппы 2-аминотиазолов в комплексах с H-связью (1:1) достаточно близки. Коэффициенты формы, определяющие вклад координат q_1 и q_2 в валентные колебания $v_c(NH)$, $v_f(NH)$ при переходе от свободных молекул (табл. 9) к связанным (табл. 12) существенно меняются.

Таблица 12.

Частоты	И	нормированные	коэффициенты	формы	нормальных	колебаний		
2-аминотиазолов в комплексах с Н-связью (1:1) с различными протоноакцепторами.								

Соединение	Акцептор	Отнесение	Частоты нормальных	Нормированные		
	протона	полос	колебаний	коэффициенты формы		
			(cm ⁻¹) (расчетные)	q_1	q_2	γ
2-амино-	Диоксан	$\nu_{\rm c}(\rm NH)$	3301.3	0.9898	0.2825	-0.0228
тиазол		v _f (NH)	3477.1	0.3076	-0.9976	0.0171
	$T\Gamma \Phi$		2207.0	0.0020	0 2710	0.0000
	$\Pi \Psi$	$v_{c}(NH)$	3297.9	0.9930	0.2/19	-0.0222
		v _f (NH)	3472.9	0.2971	-1.0005	0.0173
	ДМФА	$v_{\rm c}(\rm NH)$	3279.9	0.9984	0.2531	-0.0213
		v _f (NH)	3472.9	0.2784	-1.0055	0.0179
			2246.0	1 0000	0.0110	0.0100
	ДМСО	$v_{c}(NH)$	3246.9	1.0088	0.2118	-0.0190
		v _f (NH)	3472.1	0.2374	-1.0149	0.0191
	ГМФА	$v_{c}(NH)$	3199.0	1.0173	0.1717	-0.0158
		$v_{\ell}(NH)$	3469.2	0.1975	-1.0225	0.0202
2-амино-	Диоксан	$v_{c}(NH)$	3280.0	1.0009	0.2435	-0.0213
бензо-тиазол		v _f (NH)	3481.9	0.2692	-1.0078	0.0185
	ΤΓΦ	$v_{\rm e}(\rm NH)$	3261.9	1.0057	0.2249	-0.0211
		$v_{f}(NH)$	3478.0	0.2507	-1.0121	0.0189
	ДМФА	$v_{c}(NH)$	3249.1	1.0092	0.2101	-0.0192
		$v_{f}(NH)$	3478.0	0.2359	-1.0153	0.0194
	ЛМСО	v (NH)	3233.0	1 0123	0 1961	-0.0182
	дисо	$v_{c}(\mathbf{NII})$	2475 0	0.2221	1 0191	0.0102
		$V_{\rm f}(1N\Pi)$	5475.7	0.2221	-1.0101	0.017/
	ΓΜΦΑ	$v_{\rm c}(\rm NH)$	3175.0	1.0204	0.1542	-0.0144
		v _f (NH)	3474.6	0.1805	-1.0253	0.0209
		- /				

Наибольший вклад в колебание $v_c(NH)$ дает координата q_1 , тогда как в колебание $v_f(NH)$ – координата q_2 . С увеличением прочности H-связи в ряду протоноакцепторов: диоксан, ТГФ, ДМФА, ДМСО, ГМФА относительное различие коэффициентов q_1 и q_2 возрастает, что соответствует увеличению характеристичности колебаний $v_c(NH)$, $v_f(NH)$.

Изменение силовой постоянной K₁(NH) аминогруппы в 2-аминотиазолах при переходе от свободных молекул к комплексам (1:1) имеет то же значение, что и для замещенных анилинов. Небольшое увеличение (~ 1-2%) силовой постоянной K₂(NH) для несвязанной NH-группы в комплексах 1:1 является прямым свидетельством слабой поляризации аминогруппы под влиянием протоноакцептора.

Положение M_c⁽¹⁾ комплексов с H-связью (1:1) зависит от величины (K₁(NH))^{1/2} практически линейно. Уравнение линейной регрессии имеет вид:

 $M_c^{(1)}(1:1) = 0.9866 (K_1(NH))^{1/2} + 142.0; n=10, r=0.9999$ (9) Между электрооптическими параметрами $\partial \mu_1 \partial q_1$ и величинами $(K_1(NH))^{1/2}$ комплексов состава 1:1 имеют место нелинейные соотношения, которые достаточно хорошо аппроксимируются параболическими функциями.

Для комплексов 2-аминотиазола с протоноакцепторами:

 $\partial \mu_1 \partial q_1(1:1) = -1.1694 * 10^{-4} K(NH) + 0.7231(K(NH))^{1/2} - 1111.9; n=5, r=0.9994$ (10) Для комплексов 2-аминобензотиазола:

 $\partial \mu_1 \partial q_1(1:1) = -1.5105 * 10^{-4} \text{K(NH)} + 0.9376 (\text{K(NH)})^{1/2} - 1450.3; n = 5, r = 0.9612$ (11)

Термодинамические характеристики комплексов с Н-связью состава 1:1 – энтальпия -ΔH₁ и энтропия ΔS приведены в табл. 13.

Таблица 13.

Термодинамические характеристики и константы равновесия комплексов с Н-связью (1:1) 2-аминотиазолов с различными протоноакцепторами в CCl₄.

Донор	Акцептор	$-\Delta H_1$,	-ΔS,	K ₂₉₈ ,
протона	протона	(Ккал М ⁻¹)	(кал М ⁻¹ К ⁻¹)	(dm^3M^{-1})
2-амино-	Диоксан	3.6	9.60	2.38
тиазол	ΤΓΦ	4.0	11.60	3.17
	ДМФА	3.6	8.80	4.54
	ДМСО	4.9	11.40	12.39
	ΓΜΦΑ	5.4	10.19	54.0
2-амино-	Диоксан	4.0	12.11	2.05
бензотиазол	ΤΓΦ	3.8	11.60	3.71
	ДМФА	4.7	11.61	7.95
	ДМСО	5.6	11.73	25.21
	ΓΜΦΑ	6.0	11.87	55.44

Для комплексов 2-аминотиазола с диоксаном, $T\Gamma\Phi$, ДМФА энтальпии - ΔH_1 достаточно близки, хотя в других случаях, например, при ассоциации с анилином [1], ДМФА проявляет себя более сильным протоноакцептором, чем диоксан и $T\Gamma\Phi$. Примерно такова же величина - ΔH_1 и для комплексов состава 1:1 2-аминобензотиазола с диоксаном и $T\Gamma\Phi$, однако, при ассоциации с ДМФА

энтальпия процесса комплексообразования заметно меняется. Все это служит косвенным подтверждением заметного вклада в механизм комплексообразования 2-аминотиазолов с диоксаном и ТГФ переноса заряда по водородному мостику.

Энергетические характеристики $-\Delta H_1$ комплексов состава 1:1 2аминотиазолов наиболее близки к 2-аминопиримидину. При этом 2аминобензотиазол оказывается более сильным протонодонором, чем 2аминотиазол (табл. 13).

Образование комплексов состава 1:2 2-аминотиазолов с наиболее слабым из используемых протоноакцепторов – CH₃CN приводит к появлению четко выраженных полос поглощения $v_c^{s}(NH_2)$ и $v_c^{as}(NH_2)$, смещенных относительно полос мономеров в низкочастотную область спектра, рис. 10. По мере увеличения низкочастотного сдвига $v_c^{s}(NH_2)$ в ряду протоноакцепторов: CH₃CN, диоксан, ТГФ, ДМФА наблюдается увеличение интенсивности полосы $2\delta_c(HNH)$ вследствие резонанса Ферми колебаний $v_c^{s}(NH_2)$ и $2\delta_c(HNH)$. Одновременно наблюдается все большее перекрывание высокочастотной компоненты фермирезонансного дублета с полосой $v_c^{as}(NH_2)$ комплексов с H-связью.

Силовые постоянные K(NH), валентные углы γ (HNH) и электрооптические параметры аминогруппы $\partial \mu / \partial q$ и $\partial \mu / \partial q'$ 2-аминотиазолов приведены в табл. 10.

Рис. 10. Полосы поглощения валентных колебаний аминогруппы 2-аминотиазола (а) и 2-аминобензотиазола (b) комплексов с Н-связью состава 1:2 с различными протоноакцепторами. 2-аминотиазол: 1:CCl₄; 2:CH₃CN (C=0.03M); 3:Диоксан (C=0.05M); 4:TГФ (C=0.07M); 5:ДМФА (C=0.2M); 6:ДМСО (C=0.2M); 7:ГМФА (C=0.3M);

2-аминобензотиазол: 1:CCl₄; 2:CH₃CN (C=0.2M); 3:Диоксан (C=0.1M); 4:TГФ (C=0.15M); 5:ДМФА (C=0.15M); 6:ДМСО (C=0.2M); 7:ГМФА (C=0.2M);

Между параметрами $M_s^{(1)}$, $M_{as}^{(1)}$ и (K(NH))^{1/2} свободных молекул и комплексов с H-связью состава 1:1 2-аминотиазолов с протоноакцепторами наблюдается общая линейная корреляция:

 $M_s^{(1)}$ (free, 1:2) = 1.2106 (K(NH))^{1/2} – 618.13; n=10, r=0.9976 $M_{as}^{(1)}$ (free, 1:2) = 0.8982 (K(NH))^{1/2} + 506.2; n=10, r=0.0060 (12)

(13)

Для свободных молекул и комплексов состава 1:2 линейная корреляция наблюдается также между электрооптическими параметрами $\partial \mu / \partial q$, $\partial \mu / \partial q'$ и $(K(NH))^{1/2}$:

 $\partial \mu / \partial q$ (free, 1:2) = -3.7507 · 10⁻² (K(NH))^{1/2} + 126.8; n=10, r=0.9681 (14)

 $\partial \mu / \partial q'$ (free, 1:2) = -1.8409 \cdot 10^{-2} (K(NH))^{1/2} + 61.7; n=10, r=0.9788 (15)

Параметры $a=\partial Y/\partial x$, определяющие чувствительность $Y=\partial \mu/\partial q$, $\partial \mu/\partial q'$ к изменению x=(K(NH))^{1/2} для 2-аминотиазолов примерно в два раза больше, чем для 2-аминопиридинов и 2-аминопиримидинов.

свободных связанных Н-связью (1:2)различными Для И с протоноакцепторами молекул 2-аминотиазолов общая линейная корреляция между спектральной разностью $\Delta M^{(1)} = M_{as}^{(1)} - M_s^{(1)}$ и валентным углом γ (HNH) имеет вид:

 $\Delta M^{(1)}$ (free, 1:2) = 3.24 γ (HNH) – 255.9; n=9, r=0.9997 (16)

Валентные углы ү(HNH) несвязанных молекул 2-аминопиридина, 2аминопиримидина и 2-аминотиазолов оказались довольно близкими (~109°). Спектральные моменты M_s⁽¹⁾, M_{as}⁽¹⁾ и силовые постоянные K(NH) свободных молекул 2-аминотиазолов в CCl₄ несколько меньше, чем для 2-аминопиридина [2] и 2-аминопиримидина [3]. При этом, также как в 2-аминопиридине, связи NH аминогруппы 2-аминотиазолов оказываются неэквивалентным.

В соединениях R-NH₂ тиазольный радикал, по сравнению с пиридиновым и пиримидиновым повышает чувствительность электрооптических параметров $\partial \mu / \partial q$ и $\partial \mu / \partial q'$ свободных и связанных H-связью (1:2) с протоноакцепторами молекул 2-аминотиазолов к изменению силовых постоянных К(NH).

Для комплексов состава 1:1 зависимости параметров $\partial \mu_1 \partial q_1$ от величины K₁(NH) являются нелинейными и индивидуальны для каждого 2-аминотиазола, тогда как для аминопиридинов и аминопиримидинов эти зависимости общие и близки к линейным [2, 3].

Особенности в характере изменения динамических и электрооптических характеристик аминогруппы 2-аминотиазолов в комплексах с Н-связью обусловлены увеличением подвижности делокализованных свободных пар электронов В тиазольном цикле по сравнению с пиридиновым И пиримидиновым.

ОСНОВНЫЕ ВЫВОДЫ.

- 1. Показано, температурном интервале 288-338К спектральные что В характеристики полос поглощения аминогруппы мономеров и комплексов меняются практически линейно. Определены параметры линейной регрессии Y=aT+b ($Y=M^{(0)}$, $M^{(1)}$, $2(M^{(2)})^{1/2}$). уравнений
- 2. Исследовано влияние положения и числа атомов азота в ароматическом кольце на спектральные, геометрические, силовые и электрооптические характеристики гетероциклических ароматических аминов. Показано, что

наибольшее влияние на спектральные характеристики аминогруппы несвязанных ароматических аминов оказывают атомы азота, находящиеся в орто-положении. Увеличение числа атомов азота в кольце сопровождается увеличением валентного угла γ (HNH), силовых постоянных K(NH) и электрооптических параметров $\partial \mu / \partial q$ и $\partial \mu / \partial q'$.

- Проведено сравнительное исследование спектральных характеристик, геометрических, силовых и электрооптических параметров аминогруппы 2аминотиазола и 2-аминобензотиазола. Показано, что тиазольное кольцо в сопряжении с бензольным приводит к повышению частот и увеличению интегральной интенсивности полос поглощения валентных колебаний аминогруппы.
- 4. Установлено, что связи NH аминогруппы исследованных ароматических аминов неэквивалентны. Однако, в случае 2-аминопиразина и 3-амино-1,2,4триазина динамическая неэквивалентность связей NH невелика и не приводит к заметному расщеплению полос v(NH) и v (ND) в изотопических молекулах R-NH₁D₂ и RND₁H₂, тогда как в 2-аминотиазолах расщепление указанных полос обнаруживается экспериментально.
- 5. Изучена электрооптическая динамическая, энергетическая И неэквивалентности связей NH аминогруппы в комплексах с H-связью состава 1:1 и 1:2 исследуемых соединений с протоноакцепторами. Большая прочность Н-связи в комплексах состава 1:1, по сравнению с комплексами 1:2, подтверждается независимыми расчетами силовых простоянных К(NH) валентно-силового приближении модели R-NH₂ В поля И квантовомеханическими расчетами в приближении DFT-B3LYP/6-31G** и ab initio MP2/6-31G**.
- 6. Между спектральными, геометрическими, динамическими и электрооптическими характеристиками аминогруппы свободных и связанных Н-связью молекул установлены корреляционные соотношения, позволяющие определять важные характеристики молекул на основе исследований ИК-спектров.
- 7. Для исследованных гетерозамещенных ароматических аминов установлено, что квантовомеханические методы правильно отражают тенденцию в изменении спектральных, геометрических, силовых характеристик аминогруппы в зависимости от рода, положения и числа гетероатомов в ароматическом кольце и оказываются достаточно эффективными при исследовании систем с водородными связями. Полученные в работе результаты могут быть полезными для исследователей, работающих в области молекулярной физики, химии, фармакологии, биологии и медицины.

СПИСОК ЛИТЕРАТУРЫ

- 1. Borisenko V.E. Thermodynamics of the formation of complex between aniline derivatives and ptoton acceptors in solution / V.E. Borisenko, D.S. Kuzmin, A.V. Morev, A. Kol // Journal of Molecular Liquids. 2000. 88. P. 259-276.
- Borisenko V.E. Dynamic, electrooptical and energetic nonequivalency of NH bonds in 1:1 and 1:2 complexes of aminopyridines with proton acceptors / V.E. Borisenko, A.V. Morev, I. Faizullin, A. Koll // Journal of Molecular Structure. 2001. 560. P. 121-136.
- Borisenko V.E. The influence of hetero-substitution in the aromatic ring of amino pyrimidine on amino group characteristics in free and H-bonded molecules / V.E. Borisenko, S.A. Krekov, A.G. Guzemin, A. Koll // Journal of Molecular Structure. - 2003. - 646. - P. 125-140.
- 4. McCellan A.L. Tables of Experimantal Dipole Moments, vol. 3 / Kahara Enterprises. El Cerrito, CA, 1989.
- Borisenko V.E. Infrared spectra, dynamic and electrooptical parameters of aminogroup of substituted anilines in H-bonded 1:1 complexes / V.E. Borisenko, E.I. Tuchkova // Spectroscopy Letters. - 1994. - 27(6). - P. 741-762.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

- Колмаков Э.Э. Автоматизированная система обработки измерений на спектрофотометре SPECORD-75IR / <u>Э.Э. Колмаков</u> // ВНКСФ-8 (Восьмая Всероссийская Научная Конференция Студентов-физиков и молодых ученых), Сборник тезисов. – Екатеринбург, 2002 г. – с. 696-698.
- 2. Колмаков Э.Э. Автоматизированная система обработки измерений на спектрофотометре SPECORD-75IR / <u>Э.Э. Колмаков</u> // Вестник ТюмГу. 2002. №.3 с. 125-131.
- Borisenko V.E. Nitrogen-containing heterocyclic aromatic amines in H-bonded 1:1 and 1:2 complexes with various proton aceptors in solutions. / V.E Borisenko, <u>E.E. Kolmakov</u>, A.G. Ryasniy // Metody fizikochemiczne badania addziatywan miedzyczasteczkowych w ukladach biologicznych, Szkola Fizykochemii Organicznej, Wroclaw, – 2003 – P. 40,41.
- Borisenko V.E. Hydrogen bonds of 2-aminothiazoles in intermolecular complexes (1:1 and 1:2 composition) with proton acceptors in solutions. / V.E. Borisenko, <u>E.E. Kolmakov</u>, A.G. Rjasnyi // XVII International School-Seminar "Spectroscopy of Molecules and Crystals", Beregove, Crimea, Ukraine, -20.09 - 26.09.2005. P-7, - P. 81-82.
- Borisenko V.E. Hydrogen bonds of 2-aminothiazoles in intermolecular complexes (1:1 and 1:2) with proton acceptors in solutions / V.E. Borisenko, A. Koll, <u>E.E.</u> <u>Kolmakov</u>, A.G. Rjasnyi // Journal of Molecular Structure. – 2006. – v. 783(1-3) – P. 101-115.