На правах рукописи

МОНИНА ЛЮДМИЛА НИКОЛАЕВНА

ФАЗОВЫЕ ДИАГРАММЫ СИСТЕМ MnS – Ln₂S₃ (Ln = La – Lu), ТЕРМОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ

02.00.04. - физическая химия

А В Т О Р Е Ф Е Р А Т диссертации на соискание учёной степени кандидата химических наук

Тюмень-2010

Работа выполнена в государственном образовательном учреждении высшего профессионального образования «Тюменский государственный университет» на кафедре неорганической и физической химии

Научный руководитель:	доктор химических наук, профессор Андреев Олег Валерьевич
Официальные оппоненты:	
	доктор химических наук, профессор Слободин Борис Владимирович
	кандидат химических наук
	Паршуков Николай Николаевич
Ведущая организация:	ГОУ ВПО «Уральский государственный университет им. М. Горького», г. Екатеринбург

Защита диссертации состоится «03» июня 2010 г. в 15 часов 30 минут на заседании диссертационного совета ДМ 212.274.11 при ГОУ ВПО «Тюменский государственный университет» по адресу: 625003, г. Тюмень, ул. Перекопская, 15а, аудитория 410.

С диссертацией можно ознакомиться в библиотеке ГОУ ВПО «Тюменский государственный университет».

Автореферат разослан «30» апреля 2010 г.

Учёный секретарь диссертационного совета, кандидат химических наук

Ларина Н.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В системах MnS – Ln_2S_3 образуются сложные сульфиды MnLn_2S_4 (Ln = Gd – Lu, Y), MnLn_4S_7 (Ln = La, Ce, Dy – Tm, Y) [1-3]. Температуры и характер плавления фаз не изучались. Сведений о построении фазовых диаграмм в системах MnS – Ln_2S_3 (Ln = La – Lu) не обнаружено. В базе рентгенометрических данных (PDF 4) обнаружены сведения для сложных сульфидов MnLn_2S_4 (Ln = Gd, Tb, Tm-Lu), MnLn_4S_7 (Ln = La, Ce, Dy – Tm), полученные ещё в 60-нач.70-х гг. XX в. Термохимические характеристики фазовых превращений в системах не устанавливались. Компьютерная программа Edstate T позволяет аппроксимировать данные по фазовым диаграмма на весь ряд систем и спрогнозировать фазовые диаграммы малоизученных систем. Построение фазовых диаграмм ранее не изученных систем, установление закономерностей их изменений, определение термохимических характеристик фазовых превращений определяют актуальность настоящей работы.

Цель работы состоит в построении фазовых диаграмм систем MnS – Ln₂S₃ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu), в установлении закономерностей фазовых равновесий системах, определении рентгенометрических В В данных, кристаллохимических характеристик для сложных сульфидов, установление термохимических характеристик эвтектоидных фазовых эвтектических И превращений.

Задачами исследования явились:

1. Установление условий достижения равновесий при отжиге литых образцов в системах $MnS - Ln_2S_3$ (Ln = La - Lu).

2. Построение зависимостей «состав-свойство», фазовых диаграмм систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu). Установление закономерностей фазообразования в системах. Прогноз фазовых диаграмм малоизученных систем.

3. Определение рентгенометрических данных и кристаллохимических характеристик сложных сульфидов, образующихся в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Tb, Dy, Er, Tm, Lu).

4. Определение термохимических характеристик эвтектических и эвтектоидных фазовых превращений в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy).

5. Установление корреляции между эволюцией фазовых равновесий в системах $MnS - Ln_2S_3$ (Ln = La - Lu) и кислотно-основными свойствами простых сульфидов MnS и Ln_2S_3 .

Научная новизна:

1. Впервые построены фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu). По числу образующихся сложных сульфидов выделено 4 основных типа диаграмм. Системы $MnS - Ln_2S_3$ (Ln = La, Ce) с образованием инконгруэнтно плавящихся соединений $Mn_2La_6S_{11}$, $MnCe_2S_4$; системы $MnS - Ln_2S_3$ (Ln = Pr, Gd) эвтектического типа; система $MnS - Tb_2S_3$ переходного типа с образованием сложного сульфида $MnTb_4S_7$, распадающегося по твердофазной реакции; в системах $MnS - Ln_2S_3$ (Ln = Dy, Er, Tm) образуются два сложных сульфида $MnLn_2S_4$, $MnLn_4S_7$. Конгруэнтно плавятся соединения $MnDy_2S_4$, $MnEr_2S_4$,

МпЕr₄S₇, MnTm₄S₇; инконгруэнтно – MnDy₄S₇. Соединение MnTm₂S₄ имеет две полиморфные модификации. В системе MnS – Lu₂S₃ образуется один конгруэнтно плавящийся сложный сульфид MnLu₂S₄. На зависимостях протяженности твердых растворов на основе исходных сульфидов MnS и Ln₂S₃ имеется сингулярная точка на гадолинии. Постоянное увеличение растворимости на основе MnS от следов мол. % La₂S₃ (Δr 20 %) до 1 мол. % Gd₂S₃ (1570 K, Δr 12 %), 17 мол. % Lu₂S₃ (Δr 4 %) коррелирует со сближением ионных радиусов rMn²⁺ и rLn³⁺, значениями координационных чисел катионов.

2. Закономерности ЭВОЛЮЦИИ фазовых диаграмм систем $MnS - Ln_2S_3$ коррелируют с соотношением степени кислотности простых сульфидов MnS и Ln₂S₃, которая пропорциональна электроотрицательности атомов. степени обратно пропорциональна ионному радиусу окисления катиона, катиона. Сопоставление вычисленных значений для MnS и Ln₂S₃ позволило отнести соединения в системах с Ln = La, Ce к тиоманганатам, а соединения с Ln = Tb - Luк тиолантанатам. Диаграммы систем, в которых соединения MnS и Ln_2S_3 (Ln = Pr – Gd) имеют близкие значения степени кислотности, относятся к эвтектическому типу.

3. Составлены термохимические уравнения эвтектических и эвтектоидных фазовых превращений в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy). Теплоты плавления эвтектик составляют 92-97 кДж/г, теплоты эвтектоидных взаимодействий 3-9 кДж/г.

Практическая значимость. Построенные фазовые диаграммы и данные по фазовым превращениям являются справочным материалом и опубликованы в открытой печати. Метрические характеристики фазовых диаграмм позволяют подобрать методы и условия получения образцов заданных составов в необходимом состоянии. Предложенная методика расчета теплот плавления простых и сложных сульфидов может быть применена и при определении термодинамических характеристик соединений в других системах.

Достоверность работы. В работе использовались исходные сульфиды, установленной фазовой однородности и химического состава. Исследуемые образцы гарантированно доведены до равновесного состояния в процессе отжига при температурах 770 К, 1170 К и 1370-1670 К. Фазовые диаграммы систем построены при применении комплекса методов физико-химического анализа на поверенной аппаратуре, при согласованности результатов в параллельных опытах, а также полученных независимыми методами исследования.

На защиту выносятся:

1. Фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu).

2. Закономерности трансформации фазовых диаграмм в ряду редкоземельных элементов. Модель эволюции фазовых диаграмм. Прогноз малоизученных систем MnS – Ln₂S₃ (Ln = Nd, Sm, Ho, Yb).

3. Рентгенометрические данные, кристаллохимические характеристики сложных сульфидов, образующиеся в системах $MnS - Ln_2S_3$ (Ln = La - Lu).

4. Термохимические уравнения, значения теплот эвтектических и эвтектоидных фазовых превращений в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy), установленных по данным дифференциально-сканирующей

калориметрии. Теплоты плавления твердых растворов сульфидов, равновесно существующих при температуре эвтектики для систем MnS – Ln₂S₃ (Ln = Pr, Gd).

5. Закономерности фазовых равновесий в системах $MnS - Ln_2S_3$ (Ln = La - Lu), проанализированные исходя из кислотно-основных свойств сульфидов MnS и Ln_2S_3 .

Апробация работы. Результаты исследования были представлены на: Всероссийской научной конференции «Химия твердого тела и функциональные материалы» г. Екатеринбург, 2008; Российской молодежной научной конференции «Проблемы теоретической и экспериментальной химии», г. Екатеринбург, 2009; Международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук», г. Томск, 2009; Международной конференции по химической термодинамике, г. Казань, 2009; семинаре СО РАН-УрО РАН «Термодинамика и материаловедение», г. Новосибирск, 2010.

Публикации. По теме диссертации опубликовано 12 работ, в том числе 1 в журнале, рекомендованном ВАК РФ.

Работа выполнена при финансовой поддержке ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009-2013 гг., ГК 6к/143-09 (П 646); гранта ТюмГУ на научные и экспедиционные исследования для аспирантов ТюмГУ, 2008 г.

Структура и объем работы. Диссертация состоит из введения, трех глав, выводов, списка литературы. Работа изложена на 145 страницах, включая 65 рисунков и 27 таблиц. Список литературы насчитывает 107 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована цель работы, определены задачи исследования, научная новизна, практическая значимость работы, основные положения, выносимые на защиту.

В первой главе работы рассмотрены и обобщены литературные сведения по фазообразованию в двойных системах Mn - S, Ln - S, $MnS - Ln_2S_3$ (Ln = La - Lu). Приведены литературные данные по структурам и свойствам простых и сложных сульфидов. Проанализированы основные формулы термодинамических расчетов фазовых диаграмм и определения теплот плавления сульфидов.

Вторая глава посвящена описанию методов синтеза сульфидных соединений и методике выполнения физико-химического анализа. Исходные сульфиды MnS и Ln₂S₃ (Ln = La – Lu) синтезированы косвенным методом в потоке сульфидирующих газов CS₂ и H₂S, полученные разложением роданида аммония NH₄CNS. Моносульфид марганца получен из сульфата MnSO₄ марки «хч» при температуре 970-1070 К; полуторные сульфиды редкоземельных элементов получены из оксидов марок «В», «Г», «Д», «Ж», «Л», «М» при 1270-1370 К. на фазовую однородность Полученные сульфиды аттестованы методами рентгенофазового и химического анализов.

Литые образцы заданных составов в системах $MnS - Ln_2S_3$ (Ln = La – Lu) получены сплавлением исходных компонентов, помещенных в графитовые тигли, в течение 2 минут по 2-3 цикла на установке токов высокой частоты в атмосфере аргона и паров серы при общем давлении 1 атм. Образцы отжигались при

температурах 1570-1670 К в течении 30-120 минут в атмосфере аргона и паров серы; при низкотемпературном отжиге образцы находились в вакуумированных и запаянных кварцевых ампулах в муфельных печах при температурах 770-1170 К в течении 2000-2800 часов. В процессе отжига контролировали фазовый состав и микротвердость образцов.

Методы физико-химического анализа (ФХА). Рентгенофазовый анализ $(P\Phi A)$ применяется ДЛЯ идентификации фазового состава. установления количества фаз и структуры фаз исследуемых образцов. Съёмку дифрактограмм проводили по методу «порошка» на дифрактометрах «Дрон-6» (кобальтовое излучение Со Ка λ = 1.78892 Å, Fe-фильтр) и «Дрон-7» (медное излучение Си Ка $\lambda = 1.54051$ Å, Со-фильтр). Параметры элементарных ячеек (э.я.) фаз с кубической структурой типа NaCl, Th₃P₄, MgAl₂O₄ определяли из рефлексов в области углов $2\theta = 60^{\circ} - 120^{\circ}$ с точностью ± 0.0002 нм, орторомбическую, гексагональную, моноклинную структуру с точностью ±0.002 нм. Для расчетов и построения зависимости «состав-параметр э.я.» применяли программный комплекс PDWin 4.0 и Powder 2.0. Микроструктурный анализ (MCA) применяли для установления количества фаз, границ областей гомогенности, определения последовательности кристаллизации фаз в системах. Исследования проведены на отполированных и протравленных (травление HCl разбавленной от 1:100 до 1:300) образцах на оптических микроскопах ЕС МЕТАМ РВ-22 и металлургическом микроскопе «МС Дюрометрический (ДMA) 5000». анализ применяли для определения микротвердости фаз при различных температурах отжига, установления границ твердых растворов, для построения зависимости «состав – микротвердость». Микротвёрдость образцов в исследуемых системах измеряли на приборе ПМТ – ЗМ методом Виккерса. Ошибка измерений составляет 5-7% от измеряемой дифференциально-сканирующей Метод калориметрии (ДСК) величины. применяли для построения линий ликвидуса, солидуса, определения температур переходов полуторных сульфидов в твердом состоянии, а также для определения теплоты фазовых превращений и теплоты плавления тугоплавких соединений. ДСК проведен на установке «Setsys Evolution 1750» (TGA-DSC 1600). Определение температурных и тепловых характеристик образцов выполнены при использовании программного комплекса SETSOFT 2000. Ошибка в определении температур ±1 К. Визуально-политермический анализ (ВПТА) использовали для построения фазовых диаграмм в высокотемпературной области до 2200 К, определения температур плавления сложных сульфидов. ВПТА выполнен на установке, созданной на кафедре неорганической и физической химии ТюмГУ. Погрешность в фиксировании температуры ±10-15 К.

В третьей главе описываются фазовые равновесия в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu). Впервые построены фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu). В системах выделено 4 основных типа фазовых диаграмм. Системы $MnS - Ln_2S_3$ (Ln = La, Ce) с образованием сложных сульфидов $Mn_2La_6S_{11}$ и $MnCe_2S_4$, плавящихся инконгруэнтно. Системы $MnS - Ln_2S_3$ (Ln = Pr, Gd) эвтектического типа. Системы $MnS - Ln_2S_3$ (Ln = Dy, Er, Tm) с образованием двух сложных сульфидов. Система $MnS - Lu_2S_3$ дистектического типа с образованием конгруэнтно плавящегося соединения. Система $MnS - Tb_2S_3$ переходного типа, с образованием соединения

MnTb₄S₇, разлагающегося по твердофазной реакции. В системах MnS – Ln_2S_3 (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu) образуются следующие сложные сульфиды (табл. 1):

1. Mn₂La₆S₁₁ моноклинной сингонии;

2. $MnLn_2S_4$: сложный сульфид $MnCe_2S_4$ моноклинной, соединения $MnLn_2S_4$ (Ln = Dy, Er) ромбической сингонии, соединение MnTm₂S₄ диморфно – до 1250 К существует α-MnTm₂S₄ ромбической сингонии, свыше 1250 К и до температуры плавления β-MnTm₂S₄ кубической сингонии, MnLu₂S₄ кубической сингонии;

3. $MnLn_4S_7$ (Ln = Tb, Dy, Er, Tm) моноклинной сингонии.

Таблица 1

сложных сульфидов в системах							
$MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu)							
Соеди-	Синго-	Параметры э.я., нм		Н, МПа	Характер	Т _{пл,} К	
нение	НИЯ	a	b	с	m=0.040 кг	плавления	
$Mn_2La_6S_{11}$	монокл.	1.674	1.068	1.409	3800	инконгр.	1535
				β=101.54°			
MnCe ₂ S ₄	монокл.	1.628	1.385	0.995	3620	инконгр.	1523
				β=97.2°			
MnTb ₄ S ₇	монокл.	1.271	0.383	1.144	4250	твердофаз.	(1450)
				β=104.98°		распад	
$MnDy_2S_4$	ромб.	1.262	1.271	0.377	4020	конгр	1790
MnDy ₄ S ₇	монокл.	1.265	0.380	1.142	3820	инконгр.	1775
-				β=105.54°		_	
MnHo ₂ S ₄	ромб.	1.257	1.264	0.375	4000	конгр	1800
MnHo ₄ S ₇	монокл.	1.263	0.377	1.142	3780	конгр.	1810
				β=105.34°		-	
$MnEr_2S_4$	ромб.	1.251	1.261	0.373	3950	конгр.	1805
$MnEr_4S_7$	монокл.	1.261	0.377	1.141	3740	конгр.	1815
				β=105.17°			
$MnTm_2S_4$	куб.	1.0950	-	-	3960	конгр.	1845
	ромб.	1.243	1.250	0.364	3520	полиморф.	1250
						переход	
$MnTm_4S_7$	монокл.	1.252	0.373	1.134	3675	конгр.	1855
				β=105.27°			
$MnYb_2S_4$	куб.	1.0942	-	-	3800	конгр	1860
$MnYb_4S_7$	монокл.	1.248	0.369	1.130	3610	конгр.	1880
				β=105.12°			
$MnLu_2S_4$	куб.	1.0930	-	-	3750	конгр.	1875

Кристаллохимические и физико-химические характеристики

Фазовые диаграммы систем MnS – Ln₂S₃ (Ln = La, Ce). В каждой из систем образуется один сложный сульфид, который плавится инконгруэнтно. В системе MnS – La₂S₃ при соотношении исходных сульфидов 2MnS:3La₂S₃ образуется сложный сульфид Mn₂La₆S₁₁. Рентгенометрические данные ПО сложному сульфиду Mn₂La₆S₁₁ согласуются с данными картотеки PDF (№ карточки 27-0262). На основе сложного сульфида, в пределах точности эксперимента ±0.5 %, не обнаружено образования твердого раствора. В образцах

58, 62 мол. % La₂S₃ присутствуют сопряженные фазы, которые идентифицированы при МСА и РФА. Образцы соединения Mn₂La₆S₁₁, охлажденные из расплава и отожженные при 1470 К, образованы зернами 50-150 мкм светло серого цвета, приобретают коричневые оттенки при травлении HCl (1:200), которые плавления составляет 3800 МПа. Пик микротвердость при 1535 К. зафиксированный ДСК для образцов 40-80 мол. % La₂S₃, проявляется при постоянной температуре. В образце закаленном из расплава, присутствуют первичные кристаллы γ -La₂S₃, окруженные кристаллами соединения Mn₂La₆S₁₁, а также следы эвтектики (рис. 1). Твердый раствор на основе MnS не обнаружен, в образце 99 мол. % MnS, охлажденном из расплава и отожженном при 1470 К присутствуют следы эвтектики, параметр э.я. MnS не изменяется. На основе La₂S₃ образуется ограниченная область твердого раствора: граница при 1570 К составляет 92 мол. % La₂S₃, при 770 К – 97 мол. % La₂S₃. Температура эвтектоидной реакции в области твердого раствора на основе La₂S₃ составляет 1510 К ($\beta \rightarrow \gamma$) и 1090 К ($\alpha \rightarrow \beta$). Температура эвтектики между сульфидами MnS и Mn₂La₆S₁₁ установлена методом ДСК. Пик плавления эвтектики проявляется при 1490 К, построение треугольника Таммана дает состав эвтектики 31 мол. % La₂S₃, что согласуется с данными МСА.

Рис. 1. Фотографии микроструктуры образцов системы $MnS - La_2S_3$: 1 – 20 мол. % La_2S_3 ; 2 – 60 мол. % La_2S_3 . Присутствуют фазы: 1-первичные кристаллы MnS; 2-эвтектика между фазами MnS и $Mn_2La_6S_{11}$; 3- $Mn_2La_6S_{11}$, 4-первичные кристаллы γ - La_2S_3 . Образцы охлаждены из расплава, травление HCl 1:200 5 с. Цена деления – 5 мкм.

В системе MnS – Ce₂S₃ при соотношении 1MnS:1Ce₂S₃ образуется сложный сульфид MnCe₂S₄ моноклинной сингонии (табл. 1). В образце, охлажденном из расплава, присутствуют первичные зерна γ -Ce₂S₃, по краям которых образуются зерна соединения MnCe₂S₄ и следы эвтектики. Пик теплового эффекта инконгруэнтного разложения сложного сульфида MnCe₂S₄, зафиксированный методом ДСК, проявляется при 1523 К (рис. 2). На основе MnS твердый раствор не обнаружен. На основе Ce₂S₃ образуется ограниченная область твердого раствора: граница при 1470 К составляет 88 мол. % Ce₂S₃, при 1170 К – 96 мол. % Ce₂S₃. Тепловой эффект эвтектоидного превращения составляет 1340 К ($\alpha \rightarrow \gamma$).

Температура эвтектики установлена методом ДСК и составляет 1500 К (рис. 2). По данным МСА и ДСК состав эвтектики приходится на состав 34 мол. % Ce₂S₃.

Рис. 2. Дифференциально-термические зависимости проб образцов системы MnS – Ce₂S₃ (отжиг 1470 K): 1 – 30 мол. % Ce₂S₃; 2 – 35 мол. % Ce₂S₃; 3 – 50 мол. % Ce₂S₃. Присутствуют пики тепловых эффектов: 1, 2 –плавление эвтектических (1500 K) и первичных кристаллов, 3 – плавление эвтектических, первичных кристаллов и соединения MnCe₂S₄ (1523 K)

Фазовые диаграммы систем MnS – Ln₂S₃ (Ln = Pr, Gd) эвтектического типа (рис. 3). Различие ионных радиусов rPr³⁺ = 0.0990 нм и rMn²⁺ = 0.08830 нм составляет 16 %, а rGd³⁺ = 0.0938 нм и разница 12 % [4], что предопределяет образование протяженных областей твердых растворов. Температура эвтектики в системе MnS – Pr₂S₃ зафиксирована методом ДСК и составляет 1550 К. По данным MCA и ДСК состав эвтектики 30 мол. % Pr₂S₃. На основе Pr₂S₃ образуется область твердого раствора: при 1470 К в интервале 100-77 мол. % Pr₂S₃, при 1170 К 100-94 мол. % Pr₂S₃. Параметр элементарной кубической ячейки для γ -фазы уменьшается в области твердого раствора от 0.8580 нм (для γ -Pr₂S₃) до 0.8549 нм, микротвердость возрастает от 4500 МПа до 6290 МПа. Температура эвтектоидного превращения составляет 1250 К ($\alpha \rightarrow \gamma$). На основе MnS обнаружена растворимость до 1 мол. % Pr₂S₃ при 1470 К, параметр элементарной кубической ячейки для γ -фазы умейки для ϕ азы MnS увеличивается от 0.5224 нм до 0.5230 нм, микротвердость также увеличивается от 2200 МПа до 2340 МПа.

В системе $MnS - Gd_2S_3$ пик теплового эффекта плавления эвтектики зафиксирован при 1640 К методом ДСК. Совокупность данных МСА, ДСК и построение треугольника Таммана позволяет установить состав эвтектики равный

35.5 мол. % Gd₂S₃. На основе Gd₂S₃ образуется область твердого раствора: при 1570 К граница составляет 72 мол. % Gd₂S₃, при 1170 К – 87 мол. % Gd₂S₃. параметр э.я. для γ -Gd₂S₃ в области твердого раствора уменьшается от 0.8382 нм до 0.8374 нм, микротвердость увеличивается от 5000 МПа до 6940 МПа. Температура эвтектоидного превращения составляет 1280 К ($\alpha \rightarrow \gamma$). Растворимость на основе MnS составляет 1 мол. % Gd₂S₃, образец 99 мол. % MnS, отожженный при 1570 К однофазен; в образце 98 мол. % MnS присутствует эвтектика.

Фазовая диаграмма системы MnS – Tb₂S₃ относится к переходному типу диаграмм от эвтектической диаграммы (MnS – Gd₂S₃) к диаграмме с образованием конгруэнтно плавящегося соединения (MnS – Dy₂S₃). В системе MnS – Tb₂S₃ образуется сложный сульфид MnTb₄S₇. В образце 66.6(6) мол. % Tb₂S₃, охлажденном из расплава на микроструктуре присутствуют зерна у-Tb₂S₃ и эвтектика. После отжига при температуре 1170 К на рентгенограмме образца присутствуют рефлексы моноклинной сингонии сложного сульфида MnTb₄S₇. Ориентировочная температура твердофазного распада сложного сульфида MnTb₄S₇, по совокупности данных метода отжига и закалки от температур 1570, 1370 К и рентгенофазового анализа проб образцов, составляет 1450 К. На основе Tb₂S₃ образуется область твердого раствора: граница при 1570 К составляет 84 мол. % Tb₂S₃, при 1170 К – 95 мол. % Tb₂S₃. Температура эвтектоидного превращения составляет 1350 К ($\alpha \rightarrow \gamma$). Величина твердого раствора на основе MnS уменьшается с понижением температуры: при 1570 К граница составляет 6 мол. % Tb₂S₃, при 1170 К – 3 мол. % Tb₂S₃. Пик теплового эффекта плавления эвтектики составляет 1663 К по данным ДСК и подтверждается ВПТА проб образцов. По данным MCA и ДСК состав эвтектики 27 мол. % Tb₂S₃.

Фазовые диаграммы систем MnS – Ln_2S_3 (Ln = Dy, Er, Tm) дистектического типа с образованием двух сложных сульфидов MnLn₂S₄ и $MnLn_4S_7$ (табл. 1). В системе $MnS - Dy_2S_3$ (рис. 4) образуется сложный сульфид MnDy₂S₄. Рентгенограммы образца состава 50 мол. % Dy₂S₃, охлажденного из расплава и образца, отожженного при 1570 К и 1170 К качественно подобны между собой и идентифицированы в ромбической сингонии. При соотношении исходных сульфидов 1MnS:2Dy₂S₃ образуется сложный сульфид MnDy₄S₇ моноклинной сингонии. Температура конгрузнтного плавления соединения MnDy₂S₄ по данным ВПТА составляет 1790 К, температура инконгрузнтного разложения сульфида MnDy₄S₇ – 1755 К. Сложный сульфид MnDy₂S₄ образует эвтектики. Координаты эвтектики: между MnS и MnDy₂S₄, по данным MCA и ДСК, составляют 29 мол. % Dy₂S₃, температура 1730 К; между MnDy₂S₄ и MnDy₄S₇ 60 мол. % Dy₂S₃, T=1740 К. На основе полиморфных модификаций Dy₂S₃ образуется твердый раствор: граница при 1570 К составляет 87 мол. % Dy₂S₃, при 1170 К - 96 мол. % Dy₂S₃. Температура эвтектоидного превращения - 1390 К $(\alpha \rightarrow \gamma)$. Граница твердого раствора на основе MnS при 1570 К составляет 8 мол. % Dy₂S₃, при 1170 К – 4 мол. % Dy₂S₃.

В системе MnS – Er_2S_3 образуется 2 сложных сульфида MnEr_2S_4 и MnEr_4S_7 (рис. 3). Рентгенограммы образцов охлажденных из расплава и отожженных при 1670 К и 1170 К для каждой фазы подобны между собой. Соединение MnEr_2S_4 кристаллизуется в ромбической сингонии, MnEr_4S_7 – в моноклинной сингонии. Температуры конгрузнтного плавления установлены методом BПTA и составляют:

1805 К для $MnEr_2S_4$, 1815 К для $MnEr_4S_7$. Сложный сульфид $MnEr_2S_4$ образует эвтектики с сопряженными сульфидами: с MnS - 33 мол. % Er_2S_3 , T = 1742 K, с $MnEr_4S_7 - 60$ мол. % Er_2S_3 , T = 1750 K. Сульфид $MnEr_4S_7$ образует эвтектику с исходным сульфидом Er_2S_3 : 75 мол. % Er_2S_3 , T = 1760 K. На основе Er_2S_3 образуется твердый раствор, граница которого при 1670 К составляет 94 мол. % Er_2S_3 , при 1170 К – 97 мол. % Er_2S_3 . На основе MnS растворимость при 1670 К составляет 0-14 мол. % Er_2S_3 , при 1170 К 0-10 мол. % Er_2S_3 .

В системе MnS – Tm_2S_3 образуется 2 сложных сульфида MnTm₂S₄ и $MnTm_4S_7$ (рис. 4). Соединение $MnTm_2S_4$ существует в виде двух полиморфных модификаций: из расплава кристаллизуется в кубической сингонии (структурный тип (CT) MgAl₂O₄), в низкотемпературной области стабильна модификация ромбической сингонии (табл. 1). По данным ДСК, температура полиморфного перехода 1250 К. Температура плавления кубической модификации MnTm₂S₄ составляет 1845 К. Сложный сульфид MnTm₄S₇ из расплава кристаллизуется в дифрактограммы пробы образца из моноклинной сингонии, расплава И отожженного при 1670 К, 1170 К подобны. Температура конгрузнтного плавления сложного сульфида MnTm₄S₇ равна 1855 К. Заметной растворимости на основе сложных сульфидов не обнаружено. Сложные сульфиды MnTm₂S₄ и MnTm₄S₇ образуют эвтектики: координаты эвтектики между MnS и MnTm₂S₄ – 35 мол. % Tm₂S₃, 1750 К; между MnTm₂S₄ и MnTm₄S₇ – 62 мол. % Tm₂S₃, 1770 К, между MnTm₄S₇ и Tm₂S₃ – 78 мол. % Tm₂S₃, 1780 К. На основе Tm₂S₃ образуется твердый раствор: граница при 1670 К – 94 мол. % Tm₂S₃, при 1170 К – 96 мол. % Tm₂S₃. На основе MnS растворимость составляет: при 1670 К – 0-16 мол. % Tm₂S₃, при 1170 К – 0-11 мол. % Тт₂S₃.

Фазовая диаграмма системы MnS – Lu₂S₃ дистектического типа с конгруэнтно плавящегося соединения $MnLu_2S_4$ образованием (рис. 4). Рентгенограммы образца, охлажденного из расплава и отожженного при 1670 К, 1170 К качественно подобны между собой и идентифицированы в кубической MgAl₂O₄) (табл. 1). Температура конгрузнтного плавления сингонии (CT установлена ВПТА и составляет 1875 К. Соединение MnLu₂S₄ образует эвтектики: с MnS на составе 38 мол. % Lu₂S₃, T = 1720 K, с Lu₂S₃ - 75 мол. % Lu₂S₃, T = 1780 К. Граница твердого раствора на основе Lu₂S₃ составляет: при 1670 К – 98 мол. % Lu_2S_3 , при 1170 К – 99 мол. % Lu_2S_3 . Растворимость на основе MnS составляет: при 1670 К – 0-17 мол. % Lu₂S₃, при 1170 К – 0-13 мол. % Lu₂S₃.

Рис. 3. Фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd)

Термохимические характеристики фазовых превращений в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Dy). Построенные фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy) позволяют составить уравнения эвтектических (табл. 2) и эвтектоидных фазовых превращений (табл. 3). Теплоты превращений определены из данных ДСК построением треугольника Таммана, либо для установленных составов эвтектоидных превращений.

Теплоты плавления эвтектик в параллельных определениях, при построении треугольника Таммана воспроизводимы. Теплоты твердофазных эвтектоидных превращений методом ДСК определены впервые. После завершения фазового превращения образец имел структуру γ-фазы типа Th₃P₄. Не удалось установить влияние кинетики превращения на площадь фиксируемого пика, в виду чего полученные значения рассматриваются как предварительные и взяты в (). Теплоты плавления эвтектики находятся в пределах 92-97 кДж/г (табл. 2), теплоты эвтектоидных взаимодействий 3-9 кДж/г (табл. 3).

Условные обозначения:

ДСК 1 данные (о)-плавление кристаллов, 7 эвтектических (•)завершение плавления первичных кристаллов, 5 (∎)-тепловой эффект эвтектоидного взаимодействия; BIITA: 2 (\emptyset) данные _ начало плавления, 3 (×)-полный расплав пробы; состояние образцов по данным МСА и РФА: 4 (\Box) – гомогенный образец, 6 (\blacktriangle) - двухфазный образец.

Рис. 4. Фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = Tb, Dy, Er, Tm, Lu)

Таблица 2

Термохимические уравнения эвтектических фазовых превращений в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd)

	Коорд	цинаты		$\Delta H_{\pi\pi}$
Вид	нонвариантных		Химические уравнения	кДж/г
фазового	точек		точек фазовых превращений	
превращения	мол. % Т, К			
	Ln_2S_3			
	31	1490	$0.48MnS+0.52Mn_2La_6S_{11} (0.60La_2S_3; 0.40MnS) \leftrightarrow$	92
			↔Ж (0.31 La ₂ S ₃ ; 0.69 MnS)	
Плавление	34	1500	$0.32\text{MnS}+0.68\text{MnCe}_{2}\text{S}_{4} (0.50\text{Ce}_{2}\text{S}_{3}; 0.50 \text{ MnS}) \leftrightarrow$	96
эвтектических			↔Ж (0.34 Ce ₂ S ₃ ; 0.66 MnS)	
кристаллов	30	1550	0.60TPMnS(0.01 Pr ₂ S ₃ ; 0.99 MnS) +	97
			+ 0.40TPγ-Pr ₂ S ₃ (0.74 Pr ₂ S ₃ ; 0.26 MnS)↔	
			$\leftrightarrow \mathfrak{K} (0.30 \operatorname{Pr}_2 S_3; 0.70 \operatorname{MnS})$	
	35.5	1640	TPMnS(0.01 Gd ₂ S ₃ ; 0.99 MnS) +	95
			+ TPγ-Gd ₂ S ₃ (0.70 Gd ₂ S ₃ ; 0.30 MnS)↔	
			↔2 Ж (0.355 Gd ₂ S ₃ ; 0.645 MnS)	

(ТР – твердый раствор)

Таблица 3

Термохимические уравнения эвтектоидных фазовых превращений в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy)

Вид	Координаты нонвариантных		Химические уравнения	ΔН _{пл} кДж/г
фазового	точек		фазовых превращений	
превращения	мол. %	Т, К		
	Ln_2S_3			
	93	1510	$0.07Mn_2La_6S_{11}$ (0.60 La_2S_3 ; 0.40 MnS) +	(0.5)
			+ 0.93TPβ-La ₂ S ₃ (0.95 La ₂ S ₃ ; 0.05 MnS)↔	
			$\leftrightarrow TP\gamma - La_2S_3(0.93 La_2S_3; 0.07 MnS)$	
	96	1090	$0.03Mn_2La_6S_{11}$ (0.60 La ₂ S ₃ ; 0.40 MnS) +	(3)
			+ 0.97TPα-La ₂ S ₃ (0.97 La ₂ S ₃ ; 0.03 MnS)↔	
Эвтектоидное			\leftrightarrow TP β -La ₂ S ₃ (0.96 La ₂ S ₃ ; 0.04 MnS)	
превращение	93	1340	0.04MnCe ₂ S ₄ (0.50 Ce ₂ S ₃ ; 0.50 MnS) +	(5)
в области			+ 0.96 TP α -Ce ₂ S ₃ (0.95 Ce ₂ S ₃ ; 0.05 MnS) \leftrightarrow	
твердого			$\leftrightarrow \text{TP}\gamma\text{-Ce}_2\text{S}_3(0.93 \text{ Ce}_2\text{S}_3; 0.07 \text{ MnS})$	
раствора	84	1250	0.10TPMnS(0.01 Pr ₂ S ₃ ; 0.99 MnS) +	(9)
на основе			+ 0.90TP α -Pr ₂ S ₃ (0.93 Pr ₂ S ₃ ; 0.07 MnS) \leftrightarrow	
Ln_2S_3			$\leftrightarrow TP\gamma - Pr_2S_3(0.84 Pr_2S_3; 0.16 MnS)$	
	78	1280	0.06 TPMnS(0.01 Gd ₂ S ₃ ; 0.99 MnS) +	(5)
			+ 0.94 TP α -Gd ₂ S ₃ (0.85 Gd ₂ S ₃ ; 0.15 MnS) \leftrightarrow	
			$\leftrightarrow TP\gamma - Gd_2S_3(0.78 \text{ Gd}_2S_3; 0.22 \text{ MnS})$	
	88	1350	$0.22MnTb_4S_7(0.67 Tb_2S_3; 0.33 MnS) +$	(7)
			+ 0.78TPα-Tb ₂ S ₃ (0.94 Tb ₂ S ₃ ; 0.06 MnS)↔	
			$\leftrightarrow \text{TP}\gamma\text{-}\text{Tb}_2\text{S}_3(0.88 \text{ Tb}_2\text{S}_3; 0.12 \text{ MnS})$	
	89	1390	0.15MnDy ₄ S ₇ (0.67 Dy ₂ S ₃ ; 0.33 MnS) +	(9)
			+ 0.85TPα-Dy ₂ S ₃ (0.93 Dy ₂ S ₃ ; 0.07 MnS)↔	
			$\leftrightarrow \text{TP}\gamma\text{-}\text{Tb}_2\text{S}_3(0.89 \text{ Dy}_2\text{S}_3; 0.11 \text{ MnS})$	

Площади накладывающихся пиков плавления эвтектических и первичных кристаллов разделяли в программе SETSOFT 2000. Исходя из теплот их плавления, фазового состава эвтектик, химического состава кристаллов вычислили теплоты плавления кристаллов твердых растворов на основе соединений Ln_2S_3 (Ln = Pr, Gd) при температуре эвтектики. В системе MnS – Pr_2S_3 теплота плавления кристаллов TP γ -Pr $_2S_3$ (0.74 Pr $_2S_3$; 0.26 MnS) составляет 43.7 кДж/моль. В системе MnS – Gd_2S_3 теплота плавления кристаллов TP γ -Gd $_2S_3$ (0.70 Gd $_2S_3$; 0.30 MnS) – 41.5 кДж/моль.

Модель трансформации фазовых диаграмм систем $MnS - Ln_2S_3$ (Ln = La – Lu). Прогноз диаграмм малоизученных систем (Ln = Nd, Sm, Ho, Yb). Изменение соответствующих метрических параметров фазовых диаграмм систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu) аппроксимированы в программе Edstate T и спрогнозированы фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = Nd, Sm, Ho, Yb) (рис. 5). Для проверки адекватности смоделированных диаграмм в каждой из систем выбраны характерные составы. В системах эвтектического типа $MnS - Ln_2S_3$ (Ln = Nd, Sm) экспериментально изучены составы 30, 33.3(3), 35, 50 мол. % Ln_2S_3 . Состав эвтектики в системе $MnS - Nd_2S_3$ по данным MCA и ДСК равен 31 мол. % Nd_2S_3 , T = 1585 K (спрогнозированные значения 32 мол. % Nd_2S_3 , T = 1578 K). Координаты эвтектики в системе $MnS - Sm_2S_3$: 34 мол. % Sm_2S_3 , T = 1610 K (прогноз: 34 мол. % Sm_2S_3 , T = 1600 K).

Рис. 5. Трансформация фазовых диаграмм систем MnS – Ln₂S₃ (Ln = La-Lu), значком (*) отмечены спрогнозированные фазовые диаграммы

В системах MnS – Ln₂S₃ (Ln = Ho, Yb) экспериментально изучены образцы составов 50, 66.6(6) мол. % Ln₂S₃ (табл. 1). Соединение MnHo₂S₄ кристаллизуется в ромбической сингонии (изоструктурно MnDy₂S₄), по данным ВПТА температура конгруэнтного плавления 1800 К (прогноз 1795 К); соединение MnYb₂S₄ кубической сингонии (изоструктурно MnLu₂S₄), температура плавления 1860 К (прогноз 1852 К). Соединения MnHo₄S₇ и MnYb₄S₇ кристаллизуются в

моноклинной сингонии (изоструктурны $MnTb_4S_7$). Температура конгруэнтного плавления соединения $MnHo_4S_7$ 1810 К (прогноз 1812 К), $MnYb_4S_7 - 1880$ К (прогноз 1875 К).

Закономерности эволюции фазовых диаграмм систем MnS – Ln₂S₃ (Ln = La-Lu). В ряду систем MnS – Ln_2S_3 (Ln = La-Lu) проявляются две типичные закономерности систем, образованных редкоземельными для элементами: изменение метрических характеристик диаграмм; внутренняя монотонное периодичность, проявляющаяся в существовании 4 основных типов фазовых Непрерывная и периодическая закономерности проявляются диаграмм. В изменении протяженности твердых растворов на основе простых сульфидов MnS и Ln₂S₃ (рис. 6).

Рис. 6. Зависимости протяженности твердых растворов в системах $MnS - Ln_2S_3$ (La = La-Lu) при T=1570 K (1) и T=1170 K (2): а – на основе MnS; б – на основе Ln_2S_3

На каждой из зависимостей присутствует сингулярная точка, называемая на зависимостях «ряд редкоземельных элементов – свойство» «гадолиниевый излом». Протяженность твердого раствора на основе MnS в системах ряда La-Gd увеличивается от следов мол. % La₂S₃ до 1 мол. % Gd₂S₃ (1570 K), что согласуется со сближением ионных радиусов rMn²⁺ и rLn³⁺ от 20 % (La) до 12 % (Gd) (табл. 4). Качественное увеличение растворимости в ряду Gd-Lu коррелирует со сближением ионных радиусов до 4 % и проявлением ионами Ln³⁺ координационных чисел 7, 6, приближенных к координационному числу Mn в MnS (KЧ = 6). Величина растворимости на основе Ln₂S₃ зависит от структуры фаз и типа фазовых диаграмм систем. Постоянное увеличение протяженности твердого раствора в ряду La-Gd коррелирует со сближением ионных радиусов. Уменьшение растворимости на основе γ -Ln₂S₃ в ряду Gd-Tb-Dy предопределяется образованием сложного сульфида MnLn₄S₇ и увеличением его термической стабильности. Заметно меньшая растворимость (3-6 мол. % MnS) на основе моноклинной структуры соединений Ln₂S₃ (Ln = Er, Tm), гексагональной Lu₂S₃ (1-2 мол. % MnS), а также

низкотемпературной ромбической Ln_2S_3 (Ln = La-Dy) (3-13 мол. % MnS), определяется характеристиками структур, в которых отсутствуют структурные катионные вакансии как в структуре γ -фазы типа Th_3P_4 .

Таблица 4

Mn,	χ,	Δχ,	$r(Mn^{2+})$	Δr,	степень
Ln	[5]	%	$r(Ln^{3+})$, нм	%	кислотности
			[4]		
Mn	1.9	-	0.0830	-	45.8
La	1.27	33	0.1032	20	36.9
Ce	1.33	30	0.1010	18	39.5
Pr	1.32	31	0.0990	16	40.0
Gd	1.42	25	0.0938	12	45.4
Tb	1.40	26	0.0923	10	45.5
Dy	1.43	25	0.0912	9	47.0
Er	1.47	23	0.0890	7	49.6
Tm	1.48	22	0.0880	6	50.5
Lu	1.50	21	0.0861	4	52.3

Характеристики атомов, ионов марганца и редкоземельных элементов

По количеству образующихся в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu) сложных сульфидов выделено 4 основных типа фазовых диаграмм. Эволюция диаграмм рассмотрена исходя из соотношения характеристик атомов, ионов марганца и лантаноидов, кислотно-основных свойств исходных сульфидов MnS и Ln₂S₃. Марганец в сравнении с лантаноидами имеет более высокую электроотрицательность и наименьший ионный радиус (табл. 4). В ряду редкоземельных элементов, в следствии лантаноидного сжатия, увеличивается электроотрицательность атомов, монотонно уменьшается ионный радиус rLn³⁺, возрастает кислотность соединений Ln₂S₃. Использована величина степени пропорциональна кислотности, которая электроотрицательности, степени окисления катиона, обратно пропорциональна ионному радиусу. Из соотношения численных значений степени кислотности для MnS и Ln₂S₃ следует выделить три группы систем. В системах $MnS - Ln_2S_3$ (Ln = La, Ce) кислотные свойства MnSпреобладают над свойствами соединений La₂S₃ и Ce₂S₃. Образующиеся сложные сульфиды Mn₂La₆S₁₁ и MnCe₂S₄ следует рассматривать как тиоманганаты. В $MnS - Ln_2S_3$ (Ln = Pr, Gd, Tb) кислотно-основные системах характеристики сульфидов MnS и Ln₂S₃ соизмеримы, фазовые диаграммы эвтектического типа. Образующееся соединение MnTb₄S₇ термически не устойчиво. В системах MnS – Ln_2S_3 (Ln = Dy-Lu) степень кислотности для сульфидов Ln_2S_3 имеет большее значение, чем для MnS. Образующиеся сложные сульфиды MnLn₂S₄ (Ln = Dy-Lu) и $MnLn_4S_7$ (Ln = Dy-Tm) следует отнести к тиолантанатам. В системах с Tm-Lu определяющее значение оказывает размерный фактор, сближение ионных радиусов rMn²⁺ и rLn³⁺, координационных чисел, что и приводит к дестабилизации сложного сульфида MnLn₄S₇ и образованию MnLu₂S₄ кубической сингонии.

выводы

1. Впервые построены фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu) и установлены закономерности их трансформации в ряду Ln = La - Lu. По количеству образующихся сложных сульфидов выделено 4 основных типа фазовых диаграмм: a) системы $MnS - Ln_2S_3$ (Ln = La, Ce) с образованием инконгруэнтно плавящихся соединений Mn₂La₆S₁₁ и MnCe₂S₄; б) системы MnS – Ln₂S₃ (Ln = Pr, Gd) эвтектического типа; система MnS – Tb₂S₃ образованием сложного сульфида $MnTb_4S_7$, промежуточного типа С разлагающегося по твердофазной реакции; в) системы $MnS - Ln_2S_3$ (Ln = Dy, Er, Tm) с образованием двух сложных сульфидов $MnLn_2S_4$ и $MnLn_4S_7$; г) система MnS_7 $-Lu_2S_3$ с образованием одного конгрузнтно плавящегося соединения MnLu₂S₄. На зависимости протяженности твердых растворов на основе MnS и Ln₂S₃ в ряду лантаноидов имеется сингулярная точка на гадолинии. Постоянное увеличение растворимости на основе MnS от следов мол. % La₂S₃ (Δr 20 %) до 1 мол. % Gd₂S₃ (1570 К, Δr 12 %), 17 мол. % Lu₂S₃ (Δr 4 %) коррелирует со сближением ионных радиусов rMn²⁺ и rLn³⁺, значениями координационных чисел катионов.

2. Изменение соответствующих метрических параметров фазовых диаграмм систем $MnS - Ln_2S_3$ (Ln = La, Ce, Pr, Gd, Tb, Dy, Er, Tm, Lu) аппроксимированы в программе Edstate T. Спрогнозированы фазовые диаграммы систем $MnS - Ln_2S_3$ (Ln = Nd, Sm, Ho, Yb). Экспериментально установлены координаты эвтектических точек в системах $MnS - Ln_2S_3$ (Ln = Nd, Sm), температуры плавления сложных сульфидов $MnLn_2S_4$ и $MnLn_4S_7$ (Ln = Ho, Yb), которые совпадают с прогнозом в пределах 1 %.

3. Исходя из экспериментально построенных фазовых диаграмм, данных дифференциально-сканирующей калориметрии, построение треугольника Таммана, составлены термохимические уравнения эвтектических и эвтектоидных фазовых превращений в системах MnS – Ln_2S_3 (Ln = La, Ce, Pr, Gd, Tb, Dy). Теплоты плавления эвтектик составляют 92-97 кДж/г, эвтектоидных фазовых превращений 3-9 кДж/г. Из данных по теплотам плавления эвтектик и первичных кристаллов, вычислены теплоты плавления твердых растворов на основе соединений Ln_2S_3 (Ln = Pr, Gd) при температуре эвтектики, которые составляют 41-44 кДж/моль.

4. Закономерности фазовые равновесия в системах $MnS - Ln_2S_3$ (Ln = La, Ce, Tb, Tm, Lu) рассмотрены исходя ИЗ соотношения Gd, Dy, Er, Pr, кристаллохимических и энергетических характеристик атомов, ионов Mn²⁺, Ln³⁺ и кислотно-основных свойств MnS и Ln₂S₃. Использовано понятие степени кислотности, которая пропорциональна электроотрицательности атомов, степени катиона, обратно пропорциональна ионному радиусу окисления катиона. Сопоставление вычисленных значений для MnS и Ln₂S₃ позволило отнести соединения в системах с Ln = La, Ce к тиоманганатам, а соединения с Ln = Dy-Lu к тиолантанатам. Диаграммы систем, в которых соединения MnS и Ln_2S_3 (Ln = Pr-Gd) имеют близкие значения степени кислотности, относятся к эвтектическому типу.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

1. Flahaut J. Chimie crystalline des combinaisons ternaries soufrees, seleniurees et tellurees formees par les elemens des terres rares / J. Flahaut, P. Laruelle // Progress in science and technology of rare earths.Oxford: Pergamon Press.-1968.-V.3.-P. 149-208.

2. Ben-Dor L. Magnetic, structural, and Mössbauer effect study of $MnGd_2S_4$ / L. Ben-Dor, I. Shilo, I. Felner // Journal of Solid State Chemistry.-1978. – V. 24. – P. 401-404.

3. Collin G. Sur une famille de sulfures hexagonaux de type MLn_4S_7 ou $M_2Ln_4S_7$ dans le group cerique des elements des terres rares / G. Collin, F. Rouyer, J. Loriers // C.R.Acad.Sc. Paris. – 1968. – T. 266. – Serie C. – P. 689-691.

4. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides // Acta Crystallography. – 1976. – A. 32. – P. 751-767.

5. Husain M. Electronegative scale from X-ray photoelectron spectroscopic data / M. Husain, A. Batra // Polyhedron. – 1989. – vol. 8. – N_{2} 9 – P. 1233 – 1237.

ПУБЛИКАЦИИ ПО МАТЕРИАЛАМ ДИССЕРТАЦИИ

1^{*}. Андреев О.В. Фазовая диаграмма системы MnS – Pr₂S₃ / О.В. Андреев, Л.Н. Монина // Журн. неорганич. химии. – 2010. – Т. 55. – № 4. – С. 658-661.

2. Монина Л.Н. Фазовые равновесия в системе MnS – Gd₂S₃ / Л.Н. Монина, Т.М. Бурханова // Полифункциональные химические материалы и технологии: сборник статей. Т.2. - Томск, 2007. – С. 6-7.

3. Монина Л.Н. Фазовые равновесия в системах MnS – La₂S₃, MnS – Pr₂S₃ / Л.Н. Монина, Т.М. Бурханова // Синтез и свойства химических соединений: сборник трудов. – Тюмень. ТюмГУ, 2007. – С. 130-133.

4. Монина Л.Н. Фазовые равновесия в гетерогенных системах MnS – Ln₂S₃ (Ln = Gd – Dy) / Л.Н. Монина, В.О. Андреев // Сборник тезисов Всероссийской научной конференции «Химия твердого тела и функциональные материалы» – г. Екатеринбург, 2008. – С. 249.

5. Монина Л.Н. Фазовые диаграмма системы $MnS - Dy_2S_3 / Л.Н.$ Монина, В.О. Андреев // Физико-химический анализ природных и технических систем: сборник статей – Тюмень. ТюмГУ, 2008. – С. 113-119.

6. Монина Л.Н. Закономерности трансформации фазовых диаграмм систем $MnS - Ln_2S_3$ и FeS – Ln_2S_3 (Ln = Tb – Lu) / Л.Н. Монина, В.О. Андреев // Физико-химический анализ природных и технических систем: сборник статей – Тюмень. ТюмГУ, 2008. – С. 119-122.

7. Монина Л.Н. Фазовые равновесия в системе MnS – Ce₂S₃ / Л.Н. Монина, А.А. Касьянова // Тезисы докладов XIX Российской молодежной научной конференции «Проблемы теоретической и экспериментальной химии» – г. Екатеринбург, 2009. – C.355-356.

8. Монина Л.Н. Фазовые равновесия в системе $MnS - Lu_2S_3 / Л.Н.$ Монина, Ю.А. Кремлева // Материалы XLVII международной молодежной конференции «Студент и научно-технический прогресс» – г. Новосибирск, 2009. – С.170.

9. Монина Л.Н. Фазовые равновесия в системах MnS – Ln₂S₃ (Ln = Er, Tm) / Л.Н. Монина, Ю.А. Кремлева // Труды VI Международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук» – г. Томск, 2009. – С. 430-432.

10. Монина Л.Н. Синтез и структура фаз в системах MnS – Ln₂S₃ (Ln = La-Lu) // Материалы регионального научно-технического форума «СибХИТ-2009» – г. Новосибирск, 2009. – С. 28.

11. Monina L.N. Definition of heats of melting MnS and Pr₂S₃ / L.N. Monina, V.O. Andreev // XVII International Conference on chemical thermodynamics in Russia: Abstracts–Kazan, 2009.–V.2.–P. 283.

12. Монина Л.Н. Теплота плавления сульфида Gd₂S₃ / Л.Н. Монина, О.В. Андреев, О.С. Бороздина // Тезисы заочных докладов седьмого семинара СО РАН - УрО РАН «Термодинамика и материаловедение» – г. Новосибирск, 2010. – С. 15.

^{*)} издания, рекомендованные ВАК РФ