Вестник Тюменского государственного университета. 2010. № 3 215

Олег Валерьевич АНДРЕЕВ зав. кафедрой неорганической и физической химии, доктор химических наук, профессор andreev@utmn.ru

> Елена Ивановна САЛЬНИКОВА ассистент кафедры неорганической и физической химии

Дмитрий Валерьевич ЖУРАВСКИЙ аспирант кафедры микро- и нанотехнологий

Тюменский государственный университет

УДК 544.015.2+546.65'226

ФАЗООБРАЗОВАНИЕ, ЭВОЛЮЦИЯ МЕЗО-, НАНОЗЕРЕН ПРИ ПОЛУЧЕНИИ ОКСИСУЛЬФИДОВ Ln202S (Ln=La, Nd, Gd, Dy) ИЗ СУЛЬФАТОВ ЛАНТАНОИДОВ В ПОТОКЕ ВОДОРОДА*

MESO- AND NANOGRAIN PHASE FORMATION AND EVOLUTION IN Ln,O,S (Ln=La,Nd, Gd, Dy)OXISULPHIDE PRODUCTING FROM LANTHANIDE SULFATES IN HYDROGEN FLOW

АННОТАЦИЯ. Сульфаты Gd,(SO₄), nH,O и Dy,(SO₄), nH,O в потоке водорода при 750 °С переходят в Ln,O,S (до 95 мол. %) и Ln,O, (до 5 мол. %). Частицы соосажденных сульфатов лантана и неодима имеют размеры: 50-150 нм (91%); 150-300 нм (9%); сокристаллизованнные из раствора: 50-100 нм (30%); 200-250 нм (9%); 300-330 нм (45%); 700-1050 нм (16%). Оксисульфид (LaNd)O,S a=4,000 Å; c=6,890 Å образуется из сокристаллизованных сульфатов в потоке водорода при 750 °С в течение 5 часов.

SUMMARY. $Gd_{2}(SO_{4})_{3}$ nH₂O and $Dy_{2}(SO_{4})_{3}$ nH₂O sulfates in hydrogen flow at 750°C turn to Ln,O,S (up to 95 mol. %) and Ln,O, (up to 5 mol. %). Coprecipitated lanthanum and neodymium sulfates particles are 50-150 nm (91%), 150-275 nm (9%) sized; cocrystallized from the solution ones are 50-100 nm (30%), 200-250 nm (9%), 300-330 nm (45%); 700-1050 nm (16%) sized. (LaNd)O₂S (a=4,000 Å; c=6,890 Å) oxisulphide is obtained from cocrystallized sulfates in hydrogen flow at 750 °C in 5 hours.

КЛЮЧЕВЫЕ СЛОВА. Оксисульфиды лантаноидов, поток водорода, дифрактограммы, фазообразование, эволюция зерен, мезо-, наночастицы.

KEY WORDS. Lanthanide Oxysulphides, hydrogen flow, diffractograms, phase formation, grain evolution, meso-, nanoparticles.

Оксисульфиды лантаноидов являются одним из наиболее перспективных классов новых лазерных материалов [1]. Высокие температуры плавления оксисульфидов: для La₂O₂S — 2070 °C, для Sm₂O₂S — 1980 °C, для других соединений Ln,O,S указан интервал плавления 1900-2100 °C, определяют сложность технических решений при получении образцов оксисульфидов направленной кристаллизацией из расплава. Метод прессования, применяемый при получении поликристаллических образцов лазерных материалов, активно развиваемый в последние годы [3], для оксисульфитных фаз не применялся. Среди соединений

• Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг. ГК 6К/143-09 (П 646).

редкоземельных элементов имеются матричные среды, к которым относятся оксисульфиды La₂O₂S и Gd₂O₂S, а также ионы — активаторы Nd³⁺ и Dy³⁺. В соединениях Ln₂O₂S ионы редкоземельных элементов находятся в форме Ln³⁺.

В [2] показано, что La₂(SO₄)₃·8H₂O при обработке в потоке водорода в интервале температур 600-900 °C количественно переходит в оксисульфид La,O,S. Данных по изучению восстановления в потоке водорода сульфатов неодима, гадолиния, диспрозия не обнаружено.

Развитие нанокерамического материаловедения показало, что наличие в шихте наночастиц с линейными размерами в сотни нанометров позволяет при получении таблеток заметно снизить давление прессования и температуру спекания [3]. В поликристаллических образцах для лазерных материалов должны быть равномерно распределены примеси ионов-активаторов, что определяет требования равномерности распределения катионов в структуре шихты.

Процесс соосаждения сульфатов позволяет одновременно формировать осадки различных катионов. Значения произведений растворимости сульфатов

лантаноидов ПР[La(OH)SO₄]=2,62·10⁻¹⁵, ПР[Ce(OH)SO₄]=8,23·10⁻¹⁵ позволяют формировать как осадки сульфатов редкоземельных элементов, так и создавать маточные растворы с достаточными концентрациями катионов для наработки шихты. Сведений по изучению процессов соосаждения сульфатов редкоземельных элементов не найдено. Не обнаружены сведения по форме и размеру частиц осадка, а также их эволюции при восстановлении в потоке водорода.

Цель работы состоит в установлении последовательности фазообразований, эволюции мезо-, нанозерен шихты при обработке в потоке водорода сульфата неодима, гадолиния, диспрозия, а также соосажденных сульфатов лантана-неодима.

Обработка сульфатов проводилась в потоке водорода при температурах 600, 750, 900°С по методике, детально представленной в [2]. Соосажденные сульфаты получали воздействием H₂SO₄ на растворы нитратов редкоземельных элементов, полученных при растворении в НЮО, заданных навесок товарных оксидов Ln₂O₃. Размеры и формы частиц определяли на атомно-силовом зондовом микроскопе «Ntegra Aura». Изучаемый образец представлял собой пластину очищенной слюды (характерный размер неоднородностей < 5 нм), на которую в трех раздельных участках нанесены капли трех различных растворов. Далее образец сушился при нормальных условиях в закрытом контейнере до визуального исчезновения жидкости. Уже твердые образцы изучали в полуконтактном режиме (рис. 2). Рентгенофазовый анализ (РФА) проводили на дифрактометре «ДРОН-7» в СиК-излучении (Ni-фильтр). Для идентификации фаз применяли лицензированную базу данных PDF-2 (2007 г.) Результаты и обсуждение. Обработка в потоке водорода сульфата неодима Nd,(SO,), nH,O приводит к восстановлению части сульфатных групп и образованию при всех температурах обработки: 600, 750 и 900℃ оксисульфида Nd,O,S (рис. 1, дифрактограммы 1, 2) с гексагональной структурой и параметрами элементарной ячейки a=3,946 Å, c=6,790 Å. Промежуточные продукты взаимодействия методом РФА не обнаружены. Процесс отражает уравнение реакции: Nd₂(SO₄)₃+12H₂→ Nd,O,S+2H,S+10H,O. Продукты обработки сульфатов Gd, (SO4)3. nH2O и Dy, (SO4)3. nH2O в потоке водорода имеют более сложный фазовый состав. На дифрактограммах образцов шихты, обработанных при 600°С, присутствуют преимущественно рефлексы оксисульфидов Gd, O, S и Dy, O, S соответственно, но значительный фон свидетельствует о наличии примесей. При температурах обработки 750°С и 900°С в продуктах присутствуют фазы Ln₂O₂S и Ln₂O₃ (рис. 1, дифрактограмма 3). Для исключения ошибки эксперимента восстановлению подвергнуты сульфаты раз-

личных форм: товарные оксиды марки «х.ч.», осажденные сульфаты, сульфаты, полученные при выпаривании маточного раствора. Во всех синтезах в шихте имеется оксид Ln₂O₃ в количестве до 5 мол. %.

В [2] изучена кинетика образования La₂O₂S при восстановлении сульфата лантана La₂(SO₄)₃·nH₂O в потоке водорода и установлена энергия активации процесса равная 78 кДж /моль. Кинетика восстановления сульфатов гадолиния и диспрозия более продолжительная, чем сульфатов лантана и неодима. При 750°C сульфаты полностью переходят в продукты реакции за следующие промежутки времени: лантана — за 3 ч., неодима — за 4 ч., гадолиния — за 5 ч., диспрозия — за 6 ч. Увеличение продолжительности протекания реакций свидетельствует о возрастании их энергии активации, что вероятнее всего и является причиной протекания конкурирующей реакции: Ln₂(SO₄)₃+12H₂ → Ln₂O₃+3H₂S+9H₂O.

Одновременное образование фаз LnO2S и Ln2O3 (Ln=Gd, Dy) определяет пригодность реакции восстановления сульфатов гадолиния и диспрозия только как первой стадии получения шихты, которая в дальнейшей должна обрабатываться сульфидирующими газами. Технология восстановления сульфатов для создания порошков потенциальных лазерных материалов, состоящих из матрицы и ионовактиваторов, является подходящей для пары лантан-неодим. Содержание неодима в лазерной матрице составляет приблизительно 0,5 мол. %. Важно установить физико-химические условия получения шихты с равномерным распределением катионов. В качестве модели выбран состав с соотношением сульфатов лантана и неодима (1:1), изучение изменений в котором позволяет прогнозировать условия формирования системы с малым содержанием одного из компонентов. Скорость гетерогенной реакции взаимодействия газообразного водорода и твердых частиц сульфата в значительной степени зависит от формы и размера частиц. Впервые получены изображения частиц соосажденных сульфатов лантана и неодима (рис. 2а). Из анализа фотографии построена гистограмма распределения частиц по размерам (рис. 3). Осадок соосажденных сульфатов преимущественно сформирован наночастицами 50-150 нм (91%), наиболее крупные частицы имеют размеры порядка 150-300 нм (9%). Следует заключить, что соосаждение сульфатов лантана и неодима позволяет формировать наноразмерные частицы. Зеренный состав сокристаллизованных сульфатов, полученных выпариванием водного раствора сульфатов лантана и неодима, более разнообразен по размерам частиц (рис. 2б). Одновременное присутствие в осадке наноразмерных частиц диаметром до 150 нм и более крупных частиц с размерами 500-1000 нм позволяет предположить, что при выпаривании раствора формируются наночастицы, которые впоследствии объединяются в агломераты.

В процессе соосаждения, сокристаллизации сульфатов лантана и неодима образуется смесь их сульфатов. Непосредственно из раствора образуются кристаллогидраты сульфатов лантаноидов. Товарные сульфаты имеют состав $Ln_2(SO_4)_3$ ·8H₂O. Уменьшение количества молекул кристаллизационной воды существенно изменяет рентгенометрические характеристики кристаллогидрата. Для установления фазового состава соосажденных, сокристаллизованных сульфатов вещества обработаны при 600 °C до постоянного веса. По данным РФА получена смесь сульфатов La₂(SO₄)₃ и Nd₂(SO₄)₃, все основные рефлексы которых присутствуют на дифрактограммах (рис. 1, дифрактограмма 4). Результаты восстановления сульфатов подтверждают данные по их исходному фазовому составу. После двух часов обработки сокристаллизованных сульфатов в потоке водорода получена смесь оксисульфидов, параметры элементарных ячеек которых соответствуют кристаллохимическим параметрам индивидуальных фаз: для $La_2O_2S - a=4,040$ Å, c=6,950 Å, для Nd₂O₂S - a=3,9466 Å; c=6,7996 Å. Увеличение продолжительности выдержки

218 Вестник Тюменского государственного университета. 2010. № 3

приводит к получению гомогенного образца, изоструктурного соединениям Ln_2O_2S . Параметры элементарных ячеек для (LaNd) O_2S равны a=4,000 Å; c=6,890 Å.

Рис. 1. Дифрактограммы проб образцов: 1 — сульфата неодима, обработанного в потоке водорода при 600°С 2 ч. 2 — сульфата неодима, обработанного в потоке водорода при 600°С 6 ч. Условные обозначения: [121] — $Nd_2(SO_4)_3$; (020) — $(NdO)_2SO_4$; 103 — Nd_2O_2S . 3 — сульфата диспрозия, обработанного в потоке водорода при 900°С 2 ч. Условные обозначения: (222) — Dy_2O_3 ; 101 — Dy_2O_2S . 4 — соосажденные сульфаты лантана и неодима (1:1 из осадка). Условные обозначения: (240) — $La_2(SO_4)_3$; [521] — $Nd_2(SO_4)_3$. 5 — соосажденные сульфаты лантана и неодима (1:1 из осадка), восстановленные в потоке водорода при 750°С 2 ч. Условные обозначения: (102) — Ln_2O_2S ; [101] — Nd_2O_2S . 6 — соосажденные сульфаты лантана и неодима (1:1 из осадка), восстановленные в потоке водорода при 750°С 5 ч. Условные обозначения: 110 — (LaNd)O_2S. Путь образования твердого раствора (LaNd)O₂S отражает следующая схема: раствор нитратов \rightarrow осаждение $H_2SO_4 \rightarrow La_2(SO_4)_3 \cdot nH_2O + Nd_2(SO_4)_3 \cdot nH_2O \rightarrow$ 750 °C, поток водорода, 2 ч. $\rightarrow LaO_2S + NdO_2S \rightarrow$ выдержка 5 ч. \rightarrow (LaNd)O₂S. Преимущественное формирование осадков сульфатов из наноразмерных частиц определяет относительно высокую скорость их конверсии в потоке водорода (5 ч. при 750 °C) в гомогенный твердый раствор оксисульфидов лантана-неодима (рис. 2в).

Рис. 2. Топография поверхности и 3D-изображение частиц: а) соосажденных сульфатов лантана и неодима (1:1 из осадка); б) сульфатов лантана и неодима (1:1), полученных при выпаривании исходного гомогенного маточного раствора; в) частицы оксисульфида (LaNdO)₂S, полученного при восстановлении соосажденных сульфатов лантана и неодима (1:1) при 750°С в течение 5 ч. в потоке водорода^{*}

• Определение размеров частиц проводилось на атомно-силовом зондовом микроскопе «Ntegra Aura».

220 Вестник Тюменского государственного университета. 2010. № 3

Рис. 3. Распределение (в %) по размерам частиц веществ, характеристики которых перечислены на рис 2: а) соосажденные сульфаты лантана и неодима (1:1 из осадка), диапазоны размеров частиц соответствующих столбцов: 40-70 нм, 130-160 нм, 180-210 нм,

250-290 нм; б) сульфаты лантана и неодима (1:1), полученных при выпаривании исходного гомогенного маточного раствора, диапазоны размеров частиц соответствующих столбцов: 30-80 нм, 90-110 нм, 180-220 нм, 230-270 нм, 270-320 нм 320-360 нм, 650-750 нм, 750-850 нм, 850-950 нм, 950-1050 нм; в) частицы оксисульфида (LaNd) O_2S , полученного при восстановлении соосажденных сульфатов лантана и неодима (1:1) 2 ч. при 750°C в потоке водорода, диапазоны размеров частиц соответствующих столбцов: 80-120 нм, 190-220 нм, 430-470 нм, 700-745 нм

Выводы

При восстановлении сульфатов гадолиния $Gd_2(SO_4)_3 \cdot nH_2O$ и диспрозия $Dy_2(SO_4)_3 \cdot nH_2O$ в потоке водорода при 750 °C в продуктах содержится более 95 мол. % оксисульфида Ln₂O₂S и до 5 мол. % оксида Ln₂O₃.

При соосаждении сульфатов лантана и неодима образуется смесь сульфатов лантаноидов, с размерами частиц 50-150 нм (91%); 150-275 нм (9%). В соосажденных сульфатах лантана и неодима, полученных выпариванием исходного раствора, зеренный состав осадка следующий: 300-330 нм (45%); 50-100 нм (30%); 200-250 нм (9%); 700-1050 нм (16%). Восстановление сокристаллизованных сульфатов лантана-неодима в течение 5 ч при 750 °C приводит к образованию гомогенного оксисульфида (LaNd)O₂S с параметрами элементарной ячейки а=4,000 Å; с=6,890 Å.

СПИСОК ЛИТЕРАТУРЫ

1. Супоницкий Ю.Л., Кузьмичева Г.М., Елисеев А.А. Оксосульфиды редкоземельных элементов // Успехи химии. 1988. С. 367-383.

2. Андреев О.В., Сальникова Е.И., Якупов А.А. Кинетика образования La₂O₂S при обработке сульфата в потоке водорода // Вестник ТюмГУ. 2009. № 6. С. 263-267.

Михитарьян Б.В. Люминесцентно-спектральные свойства твердых растворов Gd₂O₂S-Tb₂O₂S и Y₂O₂S-Tb₂O₂S: Дисс. ... канд. физ.-мат. наук: Ставрополь, 2007. 171 с.
Кузьмичева Г.М., Перепелкин И.В., Поротников Н.В., Холодный Д.С. Об обнаружении двух оптических центров в La₂O₂S:Nd // Журнал неорганической химии. 1985. Вып. 11, 2981-2983.