194

вестник

Nº 2/2003

ХИМИЯ

Александр Витальевич КЕРТМАН – доцент кафедры неорганической и физической химии химического факультета, кандидат химических наук Олег Валерьевич АНДРЕЕВ – заведующий кафедрой неорганической и физической химии химического факультета, доктор химических наук, профессор

УДК 661.865.51

ТЕРМОУСТОЙЧИВОСТЬ ФАЗ ALN S HA ВОЗДУХЕ И В ПАРАХ ВОДЫ

АННОТАЦИЯ. Изучена термоустойчивость и последовательность фазообразования при термической обработке на воздухе и в потоке перегретого водяного пара порошков фаз ALn_2S_4 (A = Ca, Sr; Ln = La, Nd, Gd), имеющих кубическую решетку типа Th_3P_4

We studied thermal stability and sequence of phases formation during thermal processing in the air and in the flow of overheated water steam of powder phases ALn_2S_4 (A = Ca, Sr; Ln = La, Nd, Gd), that have cubic lattice of type Th_3P_4

Создание на основе фаз ALn_2S_4 (A = Ca, Sr; Ln = La, Nd, Gd) поликристаллической оптической керамики [1] определяет актуальность изучения устойчивости соединений на воздухе и в парах воды. Фазы ALn_2S_4 образуются по разрезу $AS - Ln_2S_3$. Сульфиды AS имеют кристаллическую структуру типа NaCl, плавятся конгруэнтно при температуре CaS – 2720 K, SrS – 2270 K. На воздухе окисляются до сульфатов [2], но температуры процессов не приведены. Полуторные сульфиды редкоземельных элементов (P3Э) состава Ln_2S_3 существуют в виде низкотемпературных модификаций α -Ln_2S_3 ромбической сингонии и высокотемпературных γ -Ln_2S_3 кубической сингонии. Для полуторного сульфида лантана также характерна среднетемпературная модификация β -La_2S_3, которая имеет тетрагональную сингонию. В условиях подавления термической диссоциации соединения плавятся конгруэнтно: La_2S_3 при 2220 K, Nd_2S_3 при 2130 K и Gd_2S_3 при 2120 K [3]. При непрерывном нагреве окисление поликристаллических порошков Ln_2S_3 (Ln = La, Nd, Gd) на

воздухе происходит при 890-910 К и приводит к образованию оксисульфидов состава Ln_2O_2S [4]. Фазы Ln_2O_2S при нагревании на воздухе окисляются уже при 700– 750 К. С парами воды La_2S_3 начинает взаимодействовать при 920 К, что также приводит к образованию La_2O_2S [5]. Фазы ALn_2S_4 кристаллизуются в кубической решетке типа Th_3P_4 и образуют с фазами γ - Ln_2S_3 непрерывный ряд твердых раство-

Тюменского госудярственного университетя

195

ров. В инертной атмосфере термически устойчивы. Плавятся по перитектическим реакциям: CaLa₂S₄ при 2300 K, CaNd₂S₄ при 2280 K, CaGd₂S₄ при 2230 K, SrLa₂S₄ при 2290 K, SrNd₂S₄ при 2255 K, SrGd₂S₄ при 2240 K. Данные о термической устойчивости фаз ALn₂S₄ на воздухе и в парах воды отсутствуют.

Цель настоящей работы состоит в определении температурных интервалов устойчивости поликристаллических порошков состава ALn₂S₄ и керамики на основе CaLa₂S₄ при их нагревании на воздухе и в парах воды, а также идентификации продуктов протекающих взаимодействий.

Методика эксперимента

Получение порошков сульфидов и поликристаллической керамики описано в работах [1,6]. Дисперсность порошков определяли при анализе фотографий случайных секущих плоскостей структуры образцов, полученных на электронном растровом микроскопе типа JSM-T200. Окисление проб сульфидных фаз проводили на дериватографе типа Паулик-Паулик-Эрдей Q-1500D при нахождении пробы массой 0,60-1,35 г в открытом платиновом тигле и парциальном давлении кислорода 21,3 кПа, скорость нагрева 15 град/мин. Максимальная температура нагрева составляла 1550 К. Для определения фазового состава проб образцы закаливали от температуры немного выше или ниже той, при которой появлялся пик ДТА, и сосуществующие фазы идентифицировали методом РФА. Разложение двойных сульфидов состава ALn,S₄ парами воды проводили при температурах 670 К, 720 К, 770 К и 820 К в течение 1-5 часов. Навеску сульфида 0,150 г помещали в кварцевую лодочку, вносили ее в кварцевую трубу, находящуюся в нагретой до определенной температуры электропечи, через которую пропускали непрерывный поток перегретого водяного пара с парциальным давлением 101,3 кПа. Температуру начала разложения сульфида определяли: по появлению в пробе новых фаз (методом рентгенофазового анализа); по изменению массы пробы; по выделению сероводорода в качестве продукта, который улавливали при барботировании отходящих газов через раствор ацетата свинца. Рентгенофазовый анализ (РФА) порошков проводили на дифрактометре ДРОН-3М с использованием фильтрованного (Ni-фильтр) CuK_a-излучения. Для идентификации рентгенограмм использовали рентгенографические данные по индивидуальным фазам.

Результаты и обсуждение

Величины ΔG° реакций окисления фаз CaS, SrS и Ln₂S₃ (Ln = La, Nd, Gd), имеют отрицательные значения – порядка сотен кДж/моль. ΔG° реакций взаимодействия фаз с парами воды при 100%-й влажности также имеют отрицательные значения. Для фаз ALn₂S₄ величины ΔH° и ΔS° неизвестны, но по аналогии с фазами AS и Ln₂S₃, из которых они образованы, можно предположить, что с точки зрения термодинамики протекание реакций взаимодействия фаз ALn₂S₄ с кислородом воздуха и парами воды при стандартных условиях также возможно. Действительно, над сульфидными фазами существует атмосфера сероводорода, с течением достаточно длительного времени (годы) незначительно уменьшается оптическая прозрачность порошков фаз Ln₂S₃ и ALn₂S₄ в области 0,5–15 мкм, что связывают с увеличением содержания в них непрозрачных оксисульфидных фаз [1]. Вместе с тем, эти реакции протекают крайне медленно. Возможные изменения фазового состава порошков находятся за пределами чувствительности большинства методов физико-химического анализа и ими практически не фиксируются. При нагре-

ве проб порошков фаз как ALn_2S_4 , так и AS и Ln_2S_3 на воздухе или в парах воды до определенных температурных интервалов также отсутствует заметное изменение их фазового состава. В реакциях окисления сдерживающее влияние оказывает энтропийный фактор, поскольку уменьшение числа моль газов в реакции окисления приводит к отрицательным значениям изменения энтропии и положительным значениям энтропии и положительным значениям энтропийного фактора – $T\Delta S$.

вестник

196

Nº 2/2003

Другой причиной, вызывающей тормозящее действие процесса окисления порошков сульфидов, являются диффузионно-кинетические параметры. Они определяются как химической и фазовой индивидуальностью порошка, так и состоянием кристаллической решетки, которая практически всегда имеет определенные отклонения от идеального состояния ввиду наличия различного рода дефектов. Кроме того, большое значение для протекания процесса имеет площадь поверхности и поверхностная энергия зерен порошка. Поскольку скорость гетерогенного взаимодействия между веществами пропорциональна площади поверхностного контакта реагирующих фаз, то при участии газовой фазы площадь реакционной поверхности в начале реакции равна или близка площади поверхности зерен твердой фазы. Следовательно, для замедления реакции взаимодействия необходимо уменьшать поверхность зерен порошка сульфида путем их укрупнения, что также должно приводить к торможению процесса и за счет увеличения диффузионного слоя продуктов реакции.

Гетерогенные реакции взаимодействия порошков сульфидных фаз с кислородом воздуха как в пробе в целом, так и в каждых отдельных частицах протекают с поверхности к центру. Диффузия кислорода к реакционной зоне и отток газообразных продуктов реакции, происходящие при непрерывном нагреве порошка, приводят к волнообразному прохождению процессов окисления, их протяженности во времени и, в отдельных случаях, одновременному протеканию различных реакций у поверхности зерна и в его центре.

Рис. 1. Термогравиметрические (ТГ) и дифференциально-термические (ДТА) кривые окисления проб фаз состава ALn_2S_4 на воздухе. Скорость нагрева 15 град/мин, (дисперсность фаз см. табл. 1). 1 – $CaLa_2S_4$; 2 – $CaLa_2S_4$ (керамика); 3 – $CaNd_2S_4$; 4 – $CaGd_2S_4$; 5 – $SrLa_2S_4$; 6 – $SrNd_2S_4$; 7 – $SrGd_2S_4$

Температуры начала протекания реакций окисления порошков сульфидов определены экспериментально, исходя из отклонений от квазистационарного хода термогравиметрических (ТГ) и дифференциально-термических (ДТА) кривых (рис. 1). Изменение фазового состава в пробах подтверждено методом РФА. Ввиду непрерывности нагрева каждая из реакций окисления протекает в интервале температур, поэтому экспериментально были зафиксированы только температуры начала процессов, происходящих в пробе. Временной и температурный интер-

Тюменского государственного университета

валы протекания реакций, определяемые диффузионно-кинетическими параметрами, в зависимости от скорости нагрева и площади реакционной поверхности могут заметно отличаться. Для понимания процессов, происходящих при окислении проб тройных фаз состава ALn_2S_4 , в тех же условиях были получены термогравиметрические и дифференциально-термические кривые окисления порошков бинарных сульфидов AS (A = Ca, Sr) и Ln_2S_3 (Ln = La, Nd, Gd), окисление которых протекает по схемам:

$$CaS \xrightarrow{770K} CaSO_4 \xrightarrow{1260K} CaO$$
(1)

$$SrS \xrightarrow{760K} \alpha - SrSO_4 \xrightarrow{1420K} \beta - SrSO_4$$
 (2)

$$\gamma - La_2 S_3 \xrightarrow{900K} La_2 O_2 S \xrightarrow{1090K} La_2 O_2 S O_4 \tag{3}$$

$$\alpha - Nd_2S_3 \xrightarrow{800K} Nd_2O_2S \xrightarrow{970K} Nd_2O_2SO_4$$
(4)

$$\begin{array}{c} \alpha - Gd_2S_3 \xrightarrow{730K} Gd_2O_2S \xrightarrow{1020K} Gd_2O_2SO_3 \xrightarrow{1065K} \\ \xrightarrow{1065K} Gd_2O_2SO_4 \xrightarrow{1330K} Gd_2O_3 \end{array}$$
(5)

Последовательность превращений в целом для подобных сульфидов в данных реакциях сохраняется, но для каждого конкретного соединения имеет свои особенности. В частности, при окислении α -Gd₂S₃ наблюдается образование оксисульфида гадолиния состава Gd₂O₂SO₃. В других случаях образование оксисульфидных фаз не происходило.

Реакции окисления фаз состава ALn_2S_4 исследовались при постоянном парциальном давлении кислорода (21,3 кПа). В настоящей работе обсудим в деталях, как типичный пример, только процесс окисления фазы $CaLa_2S_4$, а процессы для всех других соединений суммированы на рис. 1 и в табл. 1.

Рис. 2. Рентгенограммы порошков состава CaLa₂S₄, нагретых в атмосфере воздуха и закаленных от температур: 1 – 955 К: 2 – 1045 К: 3 – 1540 К

Таблица I

3 Nd. Gd) 1 и ALn,S, (A = Ca, Sr; Ln = La,Термоустойчивость фаз AS, Ln₂S₃

d	Macca	Окисление фаз н	іа воздухе, Р(О2)=21,3 кПа	Обработка в	парах во,	ды, Р(Н ₂ О)=101,3 кПа
На	вески,	Температура	Фазовый состав проб после	Температура	Время,	Фазовый состав проб
	MΓ	начала реакции, К	нагревания до 1440 К	обработки, К	час	
	950	770	CaS, CaSO ₄ , CaO	820	1	CaS
	1140	760	SrS, SrSO ₄	820	1	SrS
	650	900	La ₂ O ₂ S, La ₂ O ₂ SO ₄	770	1	y-La,S1, La,O,S
	370	800	Nd ₂ O ₂ S, Nd ₂ O ₂ SO ₄	770	1	α-Nd,S1, Nd,O,S
	000	730	Gd2O2S, Gd2O2SO3, Gd2O3O, Gd2O3	770	1	α-Gd ₂ S ₃ , Gd ₂ O ₂ S
	600	800	CaSO ₄ , La ₂ O ₂ S, La ₂ O ₂ SO ₄	720	5	CaLa
				770	1	CaLa ₂ S ₄ , CaS, La ₂ O ₂ S
-	960	940	CaSO ₄ , La ₂ O ₂ S, La ₂ O ₂ SO ₄ , CaLa ₂ S ₄	1	1	
	000	810	CaSO ₄ , Nd ₂ O ₂ S, Nd ₂ O ₂ SO ₄	720	5	CaNd ₂ S ₄
				770	1	CaNd ₂ S ₄ , CaS, Nd ₂ O ₂ S
	380	790	CaSO ₄ , Gd ₂ O ₂ S, Gd ₂ O ₂ SO ₃ ,	720	5	CaGd ₂ S ₄
			Gd ₂ O ₂ SO ₄ , Gd ₂ O ₃	770	1	CaGd ₂ S ₄ , CaS, Gd ₂ O ₂ S
-	350	780	SrSO ₄ , La ₂ O ₂ S, La ₂ O ₂ SO ₄	720	5	SrLa ₂ S ₄
				770	1	SrLa ₂ S ₄ , SrS, La ₂ O ₂ S
-	130	810	SrSO ₄ , Nd ₂ O ₂ S, Nd ₂ O ₂ SO ₄	720	5	SrNd ₂ S ₄
·				770	1	SrNd ₂ S ₄ , SrS, Nd ₂ O ₂ S
-	300	760	SrSO ₄ , Gd ₂ O ₂ S, Gd ₂ O ₂ SO ₃ ,	720	5	SrGd ₂ S ₄
			Gd, O, SO, Gd, O,	022	-	

198

вестник

Тюменского госудярственного университетя 199

На ДТА-кривой (рис. 1 (1)) обнаружен ряд экзотермических эффектов, первый из которых начинается при 800 К и сопровождается незначительным увеличением массы образца на ТГ-кривой до температуры 955 К. Методом РФА установлено (рис. 2 (1)), что данный процесс связан с окислением порошка $CaLa_2S_4$ по его поверхностному слою по сульфата кальция по схеме:

$$CaLa_{2}S_{4} + 2xO_{2} \xrightarrow{800K} xCaSO_{4} + Ca_{1-x}La_{2}S_{4-x}$$
(6)

Образец, взятый из глубины порошка, был однофазный и содержал только рефлексы структуры типа Th_3P_4 , характерной для фазы $CaLa_2S_4$. Следует также отметить тот факт, что фаза CaS, находясь в матрице дефектной структуры фазы γ -La₂S₃, в отличие от чистого порошка CaS, начинает окисляться при несколько более высокой температуре, что связывается с необходимостью затрат энергии на разрушение структуры исходного соединения. Дальнейший нагрев приводит к началу протекания процесса, который описывается реакцией:

$$Ca_{1-x}La_{2}S_{4-x} + (5-2x)O_{2} \xrightarrow{955K} (1-x)CaSO_{4} + La_{2}O_{2}S + 2SO_{2}$$
(7)

Поскольку массовая доля CaS в CaLa₂S₄ достаточно мала, то некоторое увеличение массы образца за счет образования CaSO₄ должно компенсироваться ее уменьшением при образовании La₂O₂S, что и наблюдалось экспериментально на TГ-кривой. Рентгенограмма образца, закаленного от 1045 К (рис. 2 (2)), показала сосуществование в нем фаз CaSO₄, La₂O₂S и CaLa₂S₄. При 1090 К на ДTА-кривой появляется достаточно интенсивный пик экзотермического эффекта, который характеризует начало реакции:

$$La_2O_2S + 2O_2 \xrightarrow{1090K} La_2O_2SO_4 \tag{8}$$

Принимая во внимание резкое увеличение массы образца, начиная с температуры 1125 К, что видно из ТГ-кривой, можно сделать заключение, что процессы (7) и (8) протекают параллельно и в интервале температур 1090-1125 К убыль массы образца определяется преобладанием реакции (7), а выше 1125 К начинает доминировать реакция (8). Реакция (7) оканчивается при 1270 К, что доказывают рентгенограммы образцов, закаленных выше этой температуры, на которых не было обнаружено рефлексов фазы $CaLa_2S_4$, то есть кристаллическая структура исходного образца была уже полностью разрушена. В условиях проведения полной съемки ДТА и ТГ-кривых (1540 К) реакция (8) не завершается, поскольку в конечном продукте также обнаружено сосуществование фаз $CaSO_4$, La_2O_2S и $La_2O_2SO_4$ (рис. 2 (3)).

Таким образом, сравнивая процессы окисления порошков фаз CaS, γ -La₂S₃ и CaLa₂S₄, следует отметить, что в основном окисление последнего протекает аддитивно окислению фаз CaS и γ -La₂S₃.

При окислении горячепрессованной керамики ($\rho_{_{эксп.}}=0,996\rho_{_{теор.}}$) возрастает значимость диффузионно-кинетических параметров реакции, о чем свидетельствует более высокая температура начала протекания реакции (940 K) и наличие структуры фазы CaLa₂S₄ в образце, закаленном от конечной температуры нагрева (рис. 2 (2), табл. 1). Однако более длительные процессы диффузии кислорода вглубь керамической пластинки по сравнению с порошком того же состава не изменяют пути протекания реакции.

Окисление остальных сложных сульфидов (рис. 2 (3-7)) протекает подобно окислению $CaLa_2S_4$. Температуры начала окисления порошков, их дисперсность и образующиеся продукты реакции представлены в таблице 1. Отличительной особеннос-

тью порошков состава AGd_2S_4 , также как и фазы α - Gd_2S_3 , является образование в качестве промежуточного продукта оксисульфита гадолиния состава $Gd_2O_2SO_3$ и достаточно низкая температура разложения оксисульфата гадолиния $Gd_2O_2SO_4$ до полуторного оксида Gd_2O_3 . В целом наблюдалась последовательность фазообразований, подобная для всех изученных фаз, которую можно представить схемой:

вестник

 $ALn_{2}S_{4} \xrightarrow{ASO_{4}} (CaO)$ $ALn_{2}S_{4} \xrightarrow{A} A_{1-x}Ln_{2}S_{4-x} \xrightarrow{A} Ln_{2}O_{2}S \xrightarrow{A} (Gd_{2}O_{2}SO_{3}) \xrightarrow{A} Ln_{2}O_{2}SO_{4} \xrightarrow{A} (Gd_{2}O_{3})$

Методом ДТА определены температуры начала окисления порошков твердых растворов (структурный тип Th_3P_4) состава $[La_{((8-2x)/3)}Ca_xV_{((1-x)/3)}]S_4$, (x=0-1), где V – вакансия в катионной решетке. Они окисляются подобно фазе CaLa₂S₄, которая является их крайним составом. При этом наблюдается закономерное уменьшение температурной устойчивости твердого раствора к окислению на воздухе от мольной доли менее устойчивого компонента псевдобинарной системы (рис. 3).

Nº 2/2003

200

Рис. 3. Зависимость температуры начала окисления порошков сульфидов из области твердого раствора $La_{((8-2x)/3)}Ca_xV_{((1-x)/3)}S_4$, (x=0-1) от состава на воздухе. Скорость нагрева 15 град/мин

Исследование процессов, происходящих при обработке порошков фаз ALn_2S_4 (A = Ca, Sr; Ln = La, Nd, Gd) перегретым водяным паром, показало, что взаимодействие начинает протекать при температурах 740–770 К (табл. 1). Начало протекания реакций было определено по появлению в отходящем газе сероводорода, который улавливали путем пропускания его через раствор ацетата свинца. На рентгенограммах порошков, закаленных от температуры обработки (770 K), присутствовали рефлексы фаз ALn_2S_4 (CT Th_3P_4), AS (CT NaCl) и Ln_2O_2S . Масса исходного сульфида, составлявшая 0,150 г, уменьшалась на 0,005–0,007 г (3–5%), что соответствует уменьшению массы пробы за счет частичного образования оксисульфидной фазы Ln_2O_2S . Это позволило предложить следующую схему процесса разложения порошков сложных сульфидов:

$$ALn_2S_4 + 2H_2O \xrightarrow{740-770K} AS + Ln_2O_2S + 2H_2S$$

$$\tag{9}$$

Дальнейшее увеличение температуры (820 К) и времени обработки порошков сульфидов в парах воды приводило к полному разрушению структуры типа Th₃P₄. При этом на рентгенограммах отсутствовали рефлексы фаз ALn₂S₄, а масса проб уменьшалась на 0,013–0,015 г (~ 10% от исходной навески), что свидетельствовало о протекании реакции (9) до конца.

Выводы

Определены температурные интервалы устойчивости и последовательность фазообразования при термической обработке порошков фаз ALn_2S_4 (A = Ca, Sr; Ln = La, Nd, Gd) (характерный размер зерен 4–45 мкм) на воздухе и в потоке перегретого водяного пара. До температур 760–810 К фазовый состав проб не изменяется. При более высоких температурах ввиду процессов термоокисления наблюдается последователь-

Тюменского государственного университета

ность образования промежуточных фаз, которая подобна для всех изученных сульфидов. На протекание процессов окисления керамических материалов заметное влияние оказывают диффузионно-кинетические параметры реакции. Выдержка проб фаз в перегретом водяном паре при 720 К в течение 5 часов не приводит к изменению их фазового состава. При дальнейшем увеличении температуры наблюдается взаимодействие порошков сульфидов с парами воды, протекающее подобно для всех фаз. Относительно высокая термоустойчивость исследованных порошков сложных сульфидов в атмосферных условиях делает их перспективными материалами ИК-оптики.

ЛИТЕРАТУРА

1. Дронова Г. Н., Розе О. П., Стецюк А. Л. // Оптич. журн. 1993. № 1. С. 22-25.

2. Рипан Р., Четяну И. Неорганическая химия // М.: Мир, 1971. Т. 1. 560 с.

3. Миронов К. Е., Камарзин А. А., Соколов В. В. и др. / Редкоземельные полупроводники // Баку: ЭЛМ, 1981. С. 52–92.

4. Супоницкий Ю. Л., Кузьмичева Г. М., Елисеев А. А. // Успехи химии. 1988. Т. 57. № 3. С. 367–384.

5. Kitazawa Y., Kunimoto Y., Wakihara M., Taniguchi M. // J. of Thermal Analysis. 1982. V. 25. P. 279-290.

6. Андреев О. В., Кертман А. В., Дронова Г. Н. / Физика и химия редкоземельных полупроводников // Новосибирск: Наука, 1990. С. 143–150.

> старший научный сотрудник кафедры органической и экологической химии химического факультета, кандидат химических наук Михаил Кириллович БЕЛЯЦКИЙ – доцент кафедры органической и экологической химии химического факультета, кандидат химических наук Лариса Петровна ПАНИЧЕВА – декан химического факультета, профессор кафедры органической и экологической химии, доктор химических наук Александр Яковлевич ЮФФА – профессор-консультант кафедры органической и экологической химии химического факультета, доктор химических наук, профессор

Николай Юрьевич ТРЕТЬЯКОВ –

УДК 665.524.095

1. 1. 1. 1.

ЭМУЛЬСИОННОЕ ОКИСЛЕНИЕ КУМОЛА В ПРИСУТСТВИИ

МЕДНЫХ И НАТРИЕВЫХ СОЛЕЙ АЛКИЛМАЛОНОВЫХ КИСЛОТ

АННОТАЦИЯ. Изучена каталитическая активность алкилмалонатов меди (II) с нормальной углеводородной цепью в модельной реакции эмульсионного окисления кумола молекулярным кислородом. Установлено, что процесс окисления протекает с высокой селективностью образования гидропероксида кумила (97–98%). С увеличением длины угле-