Тюменский государственный университет, г. Тюмень

УДК 519.63: 37.026.9

ПРОБЛЕМНОЕ ОБУЧЕНИЕ НА ПРИМЕРЕ ЧИСЛЕННЫХ РЕШЕНИЙ В СИММЕТРИЧНЫХ РАСЧЕТНЫХ ОБЛАСТЯХ

Аннотация. В статье представлена проблемная ситуация, возникающая при построении расчетных сеток на примере прямоугольной трапеции. Показан способ генерации проблемных задач, раскрывающий суть симметричных расчетных областей и возможности их применения для численного решения широкого круга типовых краевых задач методом контрольных (конечных) объемов.

Ключевые слова: проблемное обучение, метод контрольных объемов, расчетные сетки, симметричное решение, двумерные декартовые координаты.

Введение. Идея проблемного обучения путем погружения в предмет через симуляцию проблемной ситуации, основана на спонтанном обучении человека в детском возрасте. Следует отметить, что естественная реакция сталкивающегося с трудностями ребенка в зрелом возрасте трансформируется в соответствии с накопленными им опытом и знаниями в осознанные формулировки противоречий и проблем в виде проблемной задачи, то есть имеет все основпризнаки творческой исследовательской деятельности, характерной для образовательного процесса высшей школы. Следовательно, внедрение методик проблемного обучения является актуальной задачей организации вузовского учебного процесса. В результате в процессе обучения в высшей школе эффективно сформируются необходимые в современном обществе профессиональные навыки, такие как готовность к профессиональному росту и профессиональной мобильности, что целиком и полностью соответствует национальной доктрине образования Российской Федерации [1]. Общая эффективность применения проблемного обучения в образовательном процессе регулярно подтверждается многочисленными отечественными и зарубежными исследованиями. Успешно развиваются концепции, изложенные в работах М. А. Даниловой, В. Т. Кудрявцева, А. М. Матюшкина, И. Я. Лернера и др. [2]. В соответствии с ними проблемное обучение является общепризнанным способом эффективного предметного обучения и повышения активности участия обучаемых в образовательном процессе в том числе и в вышей школе. Следует отметить, что потенциал развития познавательной деятельности студентов в данном направлении далеко не исчерпан, однако зачастую внедрение методик проблемного обучения сталкивается с препятствиями в виде сложившего мнения об их недостаточной пригодности для обучения практическим навыкам.

Проведенные в Тюменском государственном университете в течении 2021-2022 учебного года наблюдения во время практических занятий по математике в различных учебных командах отчасти подтверждают сложившееся мнение. Следует отметить, что полученные в процессе учебы образовательные результаты свидетельствуют в большей степени о недостаточном присутствии методик проблемного обучения в учебной программе математических дисциплин, нежели об их слабой пригодности к обучению практическим навыкам решения математических задач. Таким образом, поскольку обучение в виде активного взаимодействия с проблемным содержанием предмета подразумевает использование в образовательном процессе симуляции проблемной ситуации, отвечающей целям формирования системы знаний [3], критической задачей преподавателя становится выбор специфической проблемной задачи в соответствующей предметной области [4], [5]. По определению специфика проблемной задачи заключена в требовании создания очевидного для обучающегося противоречия между имеющимися знаниями, навыками, умениями и предъявляемым требованиям. Как правило, в процессе постановки задачи данное противоречие реализует путем внесения дополнительных обязательных ограничений. Таким образом создается искусственное интеллектуальное затруднение, преодоление которого требует от обучающихся применения творческого, креативного подхода к решению поставленной задачи. Следовательно, успешность и эффективность проблемного обучения безусловно во многом зависит от проблемной задачи, которая становится основным средством создания проблемной ситуации [3]. Безусловно,

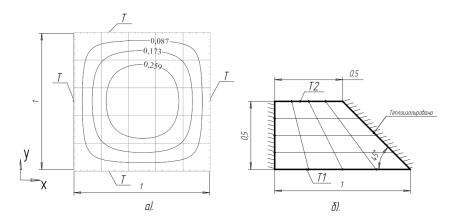
применение проблемного обучения не представляется возможным без должного обеспечения соответствующими дидактическими и методическими материалами, разработка и подготовка которых невозможна без проведения комплексных и специализированных исследований. Признанное отсутствие разработанной технологии проблемного обучения в высшей школе является одним из существующих препятствий для более активного его применения в образовательном процессе [5] и определяет существующее противоречие.

Проблема исследования. Противоречие между необходимостью изучения применения проблемного обучения и отсутствием методик для внедрения проблемного обучения в высшей школе (которые в свою очередь невозможно создать без проведения соответствующих педагогических исследований) определяет проблему, заключающуюся в недостаточности методик постановок математических задач в качестве проблемных. В рамках данного исследования изучался формат постановки математической задачи во время проблемного занятия.

В ходе наблюдений изучался процесс возникновение проблемной ситуации, степень вовлеченности аудитории и выбор обучающимися метода разрешения проблемы.

Наблюдения проводились во время обучения численным методам вычислительной математики в различных дисциплинах магистратуры, а также во время обзорной лекции для аспирантов 2 года обучения по направлению "Информатика и вычислительная техника" в Институте математики и компьютерных наук Тюменского государственного университета в 2021-2022 учебном году.

Материалы и методы. В предметной области была выбрана тема построения расчетных сеток в процессе изучения численного решения дифференциальных уравнений в частных производных методом контрольных (в зарубежной литературе — конечных) объемов. По традиции обучение методу контрольных объемов начинается с простейшего типа расчетных сеток [6,127-131], а именно равномерной прямоугольной или квадратной сетки (рис. 1а).



Puc. 1. Равномерные расчетные сетки: а) квадратная область (с изотермами решения); б) прямоугольная трапеция

В качестве примера проблемной ситуации была выбрана задача проводимости в прямоугольной трапеции боковые стенки которой теплоизолированы:

$$\frac{dT}{dn} = 0,$$

где n — нормаль к боковой стенке; T = T(x, y) — функция температуры. На верхней и нижней стенке трапеции заданы постоянные температуры, а внутри происходит выделение тепла [7, 994-995].

Очевидной проблемой в процессе численного решения данной задачи методом контрольных объемов является построение расчетной сетки, так как правая граница расчетной области должна совпадать в показанном примере с правой границей трапеции (рис. 16). Каноническое решение проблемы в виде отображения прямоугольной сетки на произвольную расчетную область образует так называемую криволинейную структурированную сетку [8]. Следует отметить, что подобные структурированные сетки создают дополнительные сложности в счете для начинающих обучение численным

методам (в частности методу контрольных объемов), так как стороны получившихся контрольных объемов имеют различные длины (рис. 16), причем не обязательно кратные. В результате перед обучающимися встает побочная проблема расчета размеров сторон контрольных объемов, не являющаяся значимой на данном этапе обучения. Построение структурированных сеток является отдельной дисциплиной вычислительной математики в процессе обучения математическому моделированию.

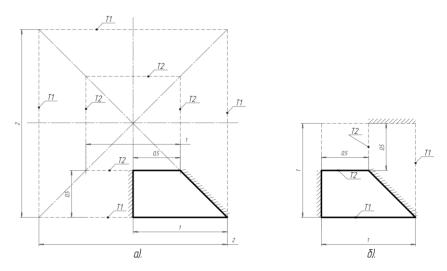
Стационарная проводимость в двумерной области в декартовых координатах описывается уравнением теплопроводности:

$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) + Q = 0,$$

где k = const — теплопроводность; T = T(x, y) — распределения тепла; Q — источниковый член уравнения [3].

Уравнение (2) решено в размерном виде со следующими параметрами: на внешних стенках квадрата заданы температуры T=0.0, а внутри имеется источник тепла Q=5.0 (рис. 1а). Коэффициент теплопроводности внутри квадрата постоянен: k=1.0. С точки зрения проводимого исследования формата постановки математической задачи в процессе проблемного обучения ключевое значение имеет сам факт существования такого простого решения и построения расчетной сетки в квадратной области. Известное свойство симметрии в приложении к изменению физических величин описывается адиабатичностью (1) по нормали к оси симметрии. Следовательно, используя свойства вертикальной, горизонтальной и диагональной симметрии квадрата обучающиеся в процессе познавательной деятельности достраивают прямоугольную трапецию до квадратного канала или углового элемента (рис. 2) с соответствующим изменением постановки краевой задачи [6].

В результате продемонстрированных рассуждений итоговый расчет выполняется в простейшем варианте прямоугольной расчетной сетки (рис. 3).



Puc. 2. Геометрическое построение двумерной задачи для прямоугольной трапеции : а). квадратный канал; б). угловой элемент

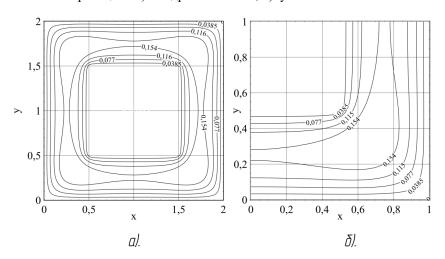


Рис. 3. Расчетные сетки и изотермы в симметричной расчетной области: а) достроенной до квадратного канал; б) достроенной до углового элемента

Методический анализ с указанием дидактических материалов и средств обучения исследованной проблемной лекции представлен в табл. 1.

 $\label{eq:2.1} \begin{tabular}{ll} $\it Taблицa 1 \end{tabular}$ Методический анализ проблемной лекции.

Тема	Численные методы. Построение расчетных сеток
Тип занятия	Лекция
Цель занятия	Изучить принципы построения расчетных сеток численных решений
Задачи	1. Раскрыть проблематику построение расчетных сеток 2. Изучить свойство симметрии расчетных областей
УУД	Предоставить студенту возможность самостоятельно получить знания в процессе постановки проблемы и поиска ее решения индивидуально или в составе малых групп
Структура за- нятия	Актуализация знаний и формирование групп — 20 мин. Решение демонстрационной задачи — 15 мин. Проблемная дискуссия — 20 мин. «Мозговой штурм» и усвоение новых знаний — 20 мин. Рефлексия — 10 мин. Домашние задание — 5 мин.
Форма организации УД	Фронтальная Индивидуальная Работа в группах «Мозговой штурм»
Методы обучения	Проблемная лекция
Средства обучения	Учебники: [6], [9]; Технические средства: меловая доска, презентационное оборудование

Во время практических занятий все численные решения были получены методом прогонки (TDMA — TriDiagonal-Matrix Algorithm) [9]. Компиляция актуализированной программы CONDUCT выполнена компилятором gfortran библиотеки GNU GCC на базе операционной системы Debian 11. Следует отметить, что в данном случае выбор средств программного обеспечения в виде перечисленных программ не является необходимым условием проблемной постановки задачи. В данном случае использовались свободно распространяемые программные средства, находящиеся в открытом доступе, а также исходные коды из учебника [6]. В зависимости от степени входной подготовки обучающихся расчет стационарного температурного поля в квадратной области с равномерной расчетной сеткой выполняется с использованием любых доступных математических программ, а также не представляет сложности для самостоятельного написания соответствующего программного кода.

Результаты. В результате наблюдений замечено, что условные обучающиеся-«гуманитарии» более охотно и активнее включались в процесс формализации математических проблем и генерации гипотез для их решения, чем более эрудированные в области математических знаний студенты-математики. Последние во время практических занятий предпочитали использовать репродуктивные методы в процессе обучения. Аналогичным образом действовали и аспиранты старших курсов направления «Информатика и вычислительная техника» в отношении предложенной им проблемной образовательной задачи. Иначе говоря, студенты-математики и аспиранты действовали в соответствии с теми профессиональными навыками и тем опытом, которые они получили, в то время как студенты-гуманитарии непосредственно обучались практическим навыкам решения задач в предложенной проблемной ситуации.

Следует отметить, что рефлексируя над решением данной задачи в результате анализа свойства симметрии обучающиеся самостоятельно открывали целый класс геометрически подобных ей задач, в том числе для расчетных областей с симметричными адиабатическими вырезами или полостями. В качестве примера такой области можно указать геометрические формы в виде равнобедренных

прямоугольных треугольников и трапеций с адиабатическими боковыми стенками.

Показанный пример с использованием свойств симметрии также является и иллюстрацией более традиционного подхода к решению краевых задач усечением заданной симметричной расчетной области до уникального расчетного сегмента. Безусловно задачи с симметричными расчетными областями не ограничены декартовой координатной системой. Все сказанное выше справедливо для постановки задач в сферических и цилиндрических координатных системах с учетом их специфических особенностей.

Заключение. В заключении хочется отметить факт стабильно высоких образовательных результатов обучения на предложенном примере у студентов старших курсов бакалавриата и магистратуры в Институте математики и компьютерных наук Тюменского государственного университета. Следует отметить и тот факт, что анализ симметрии способствовал развитию творческих способностей и креативного мышления, а успешное разрешение проблемных ситуаций повысило общий интерес к процессу познания. Таким образом использование предложенного примера проблемного учебного занятия положительно стимулировало образовательную активность в целом.

В результате проведенных наблюдений можно сделать предварительный вывод о том, что объективных причин для отказа от постановки математической задачи в качестве проблемной в настоящий момент не существует. Традиционный объяснительно-иллюстративный формат лекций в этом случае превращается в формат проблемного изложения. Вместе с тем объем выполненного исследования в целом можно признать недостаточным для вынесения окончательного вердикта. Необходимо продолжение исследования методов постановки учебных математических задач в проблемном формате.

Подводя итог хочется рекомендовать проблемные задачи на основе свойств симметрии для широкого применения в ходе практических и лекционных занятий в процессе обучения методам построения расчетных сеток и численного решения в соответствующих курсах дисциплин вычислительной математики в высших учебных заведениях.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дятлова Р. И. О применении метода проблемного обучения в преподавании в высшей школе / Р. И. Дятлова // Colloquium-Journal. 2019. № 16-3(40). С. 16-17. EDN TVGMTB.
- Евдокимов Р. М. Проблемное обучение в высшей школе / Р. М. Евдокимов, П. А. Атоян, Е. Ю. Полковникова // Вопросы педагогики. 2019.
 — № 4-2. С. 93-101. EDN ZEUNKP.
- 3. Поладова Б. Б. Проблемное обучение как фактор оптимизации математической подготовки в высшей школе / Б. Б. Поладова // Вестник Университета Российской академии образования. 2020. № 1. С. 43-59. DOI 10.24411/2072-5833-2020-10005. EDN UZDIEW.
- 4. Истамов Ф. Х. Правильный выбор решения проблемного обучения в высшей школе / Ф. Х. Истамов, З. П. Ахмедова, А. И. Дустов // Новые технологии в учебном процессе и производстве: Материалы XIX Международной научно-технической конференции, Рязань, 14–16 апреля 2021 года. Рязань: Индивидуальный предприниматель Жуков Виталий Юрьевич, 2021. С. 245-250. EDN SPVAGY.
- 5. Евдокимов Р. М. Проблемное обучение в высшей школе / Р. М. Евдокимов, П. А. Атоян, Е. Ю. Полковникова // Вопросы педагогики. 2019. № 4-2. С. 93-101. EDN ZEUNKP.
- 6. Патанкар С. В. Численное решение задач теплопроводности и конвективного теплообмена в каналах: пер. с англ. Е.В. Калабина; под ред. Г. Г. Янькова. Москва: Издательство МЭИ, 2003.
- 7. Bergman T. L., Lavine A. S. Fundamentals of heat and mass transfer. Description: 8th edition / Hoboken, NJ: John Wiley & Sons, Inc., 2017.
- 8. Тишкин В. Ф. Методы построения расчетных сеток. Курс лекций. Электронный ресурс / В. Ф. Тишкин. URL: https://keldysh.ru/mathcenter/prj-reports/EPrj-02_lectures.pdf
- 9. Патанкар С. В. Численные методы решения задач теплообмена и динамики жидкости / С. В. Патанкар. Москва: Энергоатомиздат, 1984.