Виктор Иванович КРУГЛИКОВ — доктор физико-математических наук, заведующий кафедрой математического анализа и теории функций Владимир Иванович ПАЙКОВ — кандидат физико-математических наук, доцент кафедры математического анализа и теории функций Донецкого национального университета (Украина)

УДК 517.53/57

ПРИМЕР ГОМЕОМОРФИЗМА, КВАЗИКОНФОРМНОГО В СРЕДНЕМ, НЕ ОСУЩЕСТВЛЯЮЩЕГО БИЕКЦИИ МНО-ЖЕСТВ ПРОСТЫХ КОНЦОВ ОТОБРАЖАЕМЫХ ОБЛАСТЕЙ

АННОТАЦИЯ. Приводится конкретное отображение, квазиконформное в среднем, не оставляющее инвариантным понятие граничного элемента пространственной области, определяемого посредством ёмкости конденсатора.

The quasiconformal map in the mean construction with the absent prime ends bijection is represented.

В связи с задачей о продолжении конформного отображения на границу области, К. Каратеодори [1] было введено понятие простого конца (граничного элемента) плоской односвязной области D. Оказалось, что всякое конформное отображение $f: B \to D$ единичного круга B на область D порождает биекцию между множеством точек окружности ∂B и множеством простых концов области D.

В случае пространственных областей задача о соответствии границ для различных классов отображений изучалась в [2-6].

В отличие от плоского случая, когда определенное К. Каратеодори понятие простого конца оказалось эффективным при решении вопроса о биективном соответствии границ не только для конформных, но и для более общих отображений (в частности, для квазиконформных и для квазиконформных в среднем), в случае преобразований пространственных областей выяснилось, что успешное решение вопроса о соответствии границ сильно зависит от того, насколько существенно определяемое в этом случае понятие простого конца опирается на те или иные характеристические свойства рассматриваемых классов отображений.

Обращая внимание, что важнейшие классы пространственных квазиизометрических, квазиконформных и квазиконформных в среднем отображений могут быть описаны посредством характеристических законов искажения соответствующих α -емкостей конденсаторов [7-9], представляется естественным определить понятие простого конца, используя α -емкость конденсатора.

Такой подход позволяет автоматически решить проблему биективного соответствия границ для квазиизометрических и квазиконформных отображений [3-5].

В случае же отображений, квазиконформных в среднем, эта проблема также успешно решается для обширного ряда областей [4]. В то же время, полное положительное решение указанной проблемы в классе таких отображений невозможно, и далее мы обосновываем сказанное путём построения конкретного примера.

1. Используя понятие α -ёмкости конденсатора, приведём в нужной нам форме определение простого конца и его носителя (подробнее см. [4]).

Пусть D — ограниченная область в R^n , $n \ge 3$, гомеоморфная единичному шару B. Выбирая произвольно непустые замкнутые относительно D множества F^0 , $F^1 \subset D$, назовём конденсатором тройку множеств $\left(F^0, F^1, D\right)$. При условии $\overline{F^0} \cap \overline{F^1} = \varnothing$ α -ёмкость конденсатора определим равенством

$$cap_{\alpha}(F^{0}, F^{1}, D) = \inf_{D} |\nabla \varphi(x)|^{\alpha} dx$$

где точная нижняя грань берётся по всем непрерывным ACL-функциям $\varphi: D \to [0,1]$ таким, что $\varphi(x) = 0$ при $x \in F^0$ и $\varphi(x) = 1$ при $x \in F^1$. Если же $\overline{F^0} \cap \overline{F^1} \neq \emptyset$, то полагаем $cap_{\alpha}(F^0, F^1, D) = \infty$.

Ниже (как и в [4,9]) ограничимся наиболее содержательным случаем, когда $n-1<\alpha\leq n$.

Понимая далее под континуумом (относительным континуумом) невырождающееся в точку связное замкнутое относительно R^n (относительно D) множество, убывающую по включению последовательность $\{E^m\}$ относительных континуумов $E^m \subset D, E^m \cap \partial D \neq \emptyset, \dot{m} = 1, 2...$, назовём α -фундаментальной по отношению к некоторому континууму $K \subset D$, если $\lim_{m \to \infty} cap_{\alpha}(K, E^m, D) = 0$.

В [4,5] показано, что все предельные точки α -фундаментальной последовательности $\{E^m\}$ лежат на границе ∂D области D и понятие α -фундаментальности не зависит от выбора континуума $K \subset D$.

Две α -фундаментальные последовательности множеств $\{E^m\}$ и $\{F^m\}$ считаем эквивалентными, если существует α -фундаментальная последовательность $\{A^m\}$ так, что $A^m \supset E^m \cup F^m$ для п. в. m (т. е. для всех m начиная с некоторого номера).

Простым α -концом e^{α} области D назовём класс эквивалентных α -фундаментальных последовательностей множеств $\{E^m\}$.

Под носителем простого α -конца e^{α} понимаем множество $\left|e^{\alpha}\right| = \overline{\cup \left|\left\{E^{m}\right\}\right|}$, где объединение берётся по всем α -фундаментальным последовательностям $\left\{E^{m}\right\} \in e^{\alpha}$, а $\left|\left\{E^{m}\right\}\right| = \bigcap_{m=1}^{\infty} \overline{E^{m}}$.

У любого простого α -конца его носитель расположен на ∂D и является континуумом или точкой [4].

2. Приведём, следуя [9], аналитическое описание рассматриваемого нами класса отображений.

При p,q>n-1 под отображением, квазиконформным в (p,q) среднем, понимается гомеоморфное отображение $y=f(x):D\to \Delta$ ограниченных областей $D,\Delta\subset R^n$, $n\geq 3$, класса $ACL^n(D)$, у которого конечны интегралы

$$\int_{D} H_{I}^{p}(x,f)J(x,f)dx \quad H \int_{D} H_{0}^{q}(x,f)dx,$$

где $H_I(x,f)$, $H_0(x,f)$ и J(x,f) означают, соответственно, внутреннее и внешнее аналитические отклонения и якобиан отображения f, определённые для п. в. точек $x=(x_1,x_2,...,x_n)$ из D.

Более подробное описание аналитических отклонений здесь выглядит так:

$$H_I(x,f) = |J(x,f)|/\ell^n(x,f)$$
 и $H_0(x,f) = |f'(x)|^n/|J(x,f)|$, где $f'(x)$ — производное отображение и
$$|f'(x)| = \max_{|h|=1} |f'(x)h|, \quad \ell(x,f) = \min_{|h|=1} |f'(x)h|.$$

3. Справедливо следующее утверждение, показывающее, что понятие простого α -конца неинвариантно при преобразованиях областей посредством отображений, квазиконформных в среднем.

Теорема. Для любых p,q>n-1 существует пара гомеоморфных n-мерному шару жордановых областей D и Δ и квазиконформное в (p,q)-среднем отображение $f:D\to\Delta$ так, что f не осуществляет биекции между множествами простых α -концов областей D и Δ ни при каком $n-1<\alpha\leq n$.

Обоснование справедливости данного утверждения проведём в п. 5 путём построения конкретных областей и отображения между ними с описанными выше свойствами. При этом, для простоты выкладок и в целях большей наглядности, все рассмотрения будем проводить в пространстве R^3 (они очевидным образом могут быть перенесены на случай пространств R^n любой размерности n > 3).

4. Прежде, чем проводить конкретные построения, сначала, следуя [10], рассмотрим некий специальный класс областей $G \subset \mathbb{R}^3$, являющийся источником разнообразных пояснительных примеров и контрпримеров при изучении граничных свойств пространственных отображений и функций.

Пусть вещественная функция g(u) непрерывна на отрезке [0,a], g(0)=0 и g(u)>0 при $0< u \le a$. Предположим также, что производная g'(u) непрерывна и не убывает на (0,a], при этом $\lim_{u\to 0} g'(u)=0$. Область

$$G = \{x: 0 < x_1 < a, |x_2| < g(x_1), |x_3| < b\},$$

где $0 < a < +\infty$ и $0 < b < +\infty$, назовём g-клином. Множество

$$E = \{x : x_1 = x_2 = 0, |x_3| \le b\},\$$

Фиксируя произвольно убывающую последовательность положительных чисел $\{\delta_m\}_{m=1}^{\infty}$ такую, что $\lim_{m\to\infty} \delta_m = 0$, выберем в области G убывающую по

включению последовательность
$$\{F^m\}_{m=1}^\infty$$
 относительных континуумов . $F^m = \{x: 0 < x_1 \le \delta_m, \ |x_2| < g(\delta_m), \ |x_3| < b\}, \ m=1,2....$

Приведём условия, позволяющие делать заключения о наличии или отсутствии свойства α -фундаментальности у последовательности множеств $\{F^m\}_{m=1}^{\infty}$.

Лемма 1. Для каждого 2 < α ≤ 3 при условии

$$\int_{0}^{a} \frac{du}{[g(u)]^{1/(\alpha-1)}} = +\infty$$

последовательность множеств $\{F^m\}_{m=1}^{\infty}$ α -фундаментальна.

Доказательство. В силу сказанного в п. 1 достаточно проверить, что $\lim_{m\to\infty} cap_{\alpha}(K,F^m,G)=0$ для какого-либо произвольного заданного континуума $K\subset G$. Выбирая, например, в качестве K некоторый континуум, расположенный в части области G, ограниченной плоскостями $x_1=a/2$ и $x_1=a$, рассмотрим последовательность $\{\varepsilon_m\}_{m=1}^{\infty}$ чисел $\varepsilon_m>0$, задаваемых равенствами

$$\int_{\delta_m}^{a/4} \frac{du}{\left[g(u)\right]^{1/(\alpha-1)}} = \left(\frac{4b}{\varepsilon_m}\right)^{1/(\alpha-1)}, m = 1, 2, \dots$$

Из расходимости интеграла в условии леммы вытекает $\lim_{m\to\infty} \varepsilon_m = 0$.

Для оценки величины $cap_{\alpha}(K,F^m,G)$ сначала определим допустимую для конденсатора (F^m,K,G) функцию φ_m , полагая $\varphi_m=0$, если $0< x_1< \delta_m$, и $\varphi_m=1$, если $a/4< x_1< a$, а при остальных $\delta_m\leq x_1\leq a/4$ полагаем

$$\varphi_m = \left(\frac{4b}{\varepsilon_m}\right)^{1/(\alpha-1)} \int_{\delta_m}^{x_1} \frac{du}{[g(u)]^{1/(\alpha-1)}}.$$

Очевидно, $|\nabla \varphi_m| = \left[\varepsilon_m / 4bg(x_1) \right]^{1/(\alpha-1)}$, если $\delta_m \leq x_1 \leq a/4$, и $|\nabla \varphi_m| = 0$ при остальных x_1 . Поскольку теперь функция $1-\varphi_m$ будет допустимой для конденсатора $\left(K, F^m, G \right)$ и $|\nabla (1-\varphi_m)| = |\nabla \varphi_m|$, то

$$cap_{\alpha}(K, F^{m}, G) \leq \int_{G} |\nabla \varphi_{m}|^{\alpha} dx = \int_{\delta_{m}}^{a/4} \int_{-g(x_{1})}^{g(x_{1})} \int_{-b}^{b} [\varepsilon_{m} / 4bg(x_{1})]^{\alpha/(\alpha-1)} dx_{3} =$$

$$= 4b \left(\frac{\varepsilon_{m}}{4b}\right)^{\alpha/(\alpha-1)} \int_{\delta_{m}}^{a/4} \frac{dx_{1}}{[g(x_{1})]^{1/(\alpha-1)}} = \varepsilon_{m},$$

откуда $\lim_{m\to\infty} cap_{\alpha}(K, F^m, G) = 0$, и лемма 1 доказана.

Лемма 2. Для каждого $2 < \beta \le 3$ при условии

$$\int_{0}^{a} \frac{du}{\left[g'(u)u\right]^{1/(\beta-1)}} < +\infty$$

 $\int_0^\infty \frac{du}{[g'(u)u]^{1/(\beta-1)}} < +\infty$ последовательность множеств $\{F^m\}_{m=1}^\infty$ не будет β -фундаментальной.

Доказательство. Подобно, как и в лемме 1, достаточно убедиться, что $\lim_{m\to\infty} cap_{\beta}(K, F^m, G) > 0$ для некоторого произвольного заданного континуума $K \subset G$.

В качестве континуума $K \subset G$ выберем здесь образ множества

$$\{(r,\theta,z): r=a/2, \ 0<\theta_1\leq \theta\leq \theta_2<\pi/4, \ |z|\leq b_1< b\}$$

при отображении

$$T = (x_1 = r \cos \theta, x_2 = g(r \sin |\theta|) \operatorname{sgn} \theta, x_3 = z)$$

области $D = \{(r, \theta, z): 0 < r < a / \cos \theta, |\theta| < \pi / 4, |z| < b\}$ на область G.

Возьмём произвольную функцию ψ , допустимую для конденсатора (K, F^m, G) . Тогда функция $\psi^* = \psi \circ T$ допустима для конденсатора $(T^{-1}(K), T^{-1}(F^m), D)$. Поскольку величина $|\nabla T|$ на основании свойств функции g ограничена сверху в области D некоторой положительной постоянной c = c(g), то, производя замену переменных и используя неравенство Гельдера, имеем цепочку соотношений

$$\iint_{G} |\nabla \psi|^{\beta} dx \ge \iiint_{D} \left(\frac{|\nabla \psi^{*}|}{|\nabla T|} \right)^{\beta} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} dz \int_{\theta_{1}}^{\theta_{2}} d\theta \int_{0}^{a/2} \frac{|\nabla \psi^{*}|^{\beta}}{c^{\beta}} g'(r \sin \theta) r dr \ge \int_{-b_{1}}^{b_{1}} \int_{\theta_{1}}^{\theta_{2}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr \le \int_{-b_{1}}^{b_{1}} \int_{\theta_{1}}^{\theta_{2}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \int_{\theta_{1}}^{\theta_{2}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \ge \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \sin \theta) r dr d\theta dz \le \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \cos \theta) r d\theta dz = \int_{-b_{1}}^{b_{1}} \frac{a}{c^{\beta}} g'(r \cos \theta)$$

$$\geq \frac{\left|\int_{-b_{1}}^{b_{1}} dz \int_{\theta_{1}}^{b_{2}} d\theta \int_{0}^{a/2} \nabla \psi^{*} | dr\right|}{c^{\beta} \left\{\int_{-b_{1}}^{b_{1}} dz \int_{\theta_{1}}^{\theta_{2}} d\theta \int_{0}^{a/2} \frac{dr}{\left[g'(r\sin\theta)r\right]^{1/(\beta-1)}}\right\}^{\beta-1}} \geq \frac{\left[2b_{1}(\theta_{2} - \theta_{1})\right]^{\beta}}{c^{\beta} \left\{2b_{1}(\theta_{2} - \theta_{1})\int_{0}^{a/2} \frac{dr}{\left[g'(r\sin\theta)r\right]^{1/(\beta-1)}}\right\}^{\beta-1}} = \frac{1}{c^{\beta}} \left\{\frac{b_{1}}{b_{1}} dz \int_{\theta_{1}}^{\theta_{2}} d\theta \int_{0}^{a/2} \frac{dr}{\left[g'(r\sin\theta)r\right]^{1/(\beta-1)}}\right\}^{\beta-1}}$$

$$=2b_{1}(\theta_{2}-\theta_{1}) / c^{\beta} \left\{ (\sin \theta_{1})^{\frac{2-\beta}{\beta-1}} \int_{0}^{\frac{a}{2}\sin \theta_{1}} \frac{du}{[g'(u)u]^{1/(\beta-1)}} \right\}^{\beta-1} = t.$$

Отсюда, учитывая произвол в выборе допустимой для (K, F^m, G) функции у и сходимость интеграла в условии леммы 2, приходим к оценке $0 < t \le cap_B(K, F^m, G)$, имеющей место для любого m = 1, 2, ... Лемма 2 доказана.

5. Перейдём к обоснованию теоремы из п. 3. При построениях ниже нами используется следующее замечание о конкретном g -клине G.

Рассмотрим функцию $g(u)=u^{\beta-1}$, где $u\geq 0$ и $2<\beta\leq 3$. Опираясь на леммы 1 и 2, нетрудно видеть, что в области $G=\left\{x:0< x_1<\alpha, |x_2|< x_1^{\beta-1}, |x_3|< b\right\}$ при любом $2<\alpha\leq \beta$ носителем одного из простых α -концов служит ребро $E=\left\{x:x_1=x_2=0, |x_3|\leq b\right\}$ клина G, а остальные простые α -концы области G имеют одноточечные носители; если же $\beta<\alpha\leq 3$, то носители всех простых α -концов области G одноточечны.

Фиксируя теперь произвольные параметры p,q>2, построим пару жордановых областей D и Δ и квазиконформное в (p,q)-среднем отображение $f:D\to \Delta$ так, что f не осуществляет биекцию между множествами простых α -концов областей D и Δ ни при каком $2<\alpha\leq 3$.

Для этого предварительно построим следующий конечный набор вспомогательных отображений. Пусть m – некоторое натуральное число. При каждом i=1,...,m рассмотрим области

$$D_{i} = \left\{ x : 0 < x_{1} < \frac{1}{m}, \left| x_{2} - \frac{2i - 1}{m} \right| < \frac{1}{m} (mx_{1})^{1 + i/m}, \left| x_{3} \right| < 1 \right\}$$

И

$$\Delta_i = \left\{ y : 0 < y_1 < \frac{1}{m}, \ \left| y_2 - \frac{2i - 1}{m} \right| < \frac{1}{m} (my_1)^{1 + (i - 1)/m}, \ \left| y_3 \right| < 1 \right\}$$

и определим диффеоморфизм $y = f_i(x): D_i \to \Delta_i$, полагая

$$y_1 = x_1$$
, $y_2 = \frac{2i-1}{m} + \frac{1}{m} |mx_2 - 2i + 1| \frac{m+i-1}{m+i} \operatorname{sgn}(mx_2 - 2i + 1)$, $y_3 = x_3$.

Производя простые вычисления, получим соотношения

$$\ell(x, f_i) \ge c_1, |f_i'(x)| \le c_2 |x_2 - \frac{2i - 1}{m}|^{-\frac{1}{m+i}}, |J(x, f_i)| = c_3 |x_2 - \frac{2i - 1}{m}|^{-\frac{1}{m+i}},$$

$$H_I(x, f_i) \le c_4 |x_2 - \frac{2i - 1}{m}|^{-\frac{1}{m+i}}, H_0(x, f_i) \le c_5 |x_2 - \frac{2i - 1}{m}|^{-\frac{2}{m+i}},$$

где положительные постоянные c_k , k=1,...,5, зависят только от m. В силу этих соотношений легко проверить, что оба интеграла

$$\int_{D_i} H_I^p(x, f_i) J(x, f_i) dx \quad \mathbf{H} \quad \int_{D_i} H_0^q(x, f_i) dx$$

сходятся, если $m > \max\{p, 2q\}$.

Следовательно, при таких m каждое отображение $f_i:D_i\to \Delta_i$ квазиконформно в (p,q)-среднем, и пусть далее $m>\max\{p,2q\}$ – произвольно зафиксированное натуральное число.

Нетрудно видеть, что для каждого $2 < \alpha \le 3$ найдётся i такое, что отображение $f_i: D_i \to \Delta_i$ не осуществляет биективного соответствия между множествами простых α -концов областей D_i и Δ_i . Действительно, из усло-

вия $2 < \alpha \le 3$ вытекает, что $2 + (i-1)/m < \alpha \le 2 + i/m$ с некоторыми i = 1,...,m. Следовательно, согласно сделанному в начале примера замечанию, носителем одного из простых α -концов области D_i будет ребро клина D_i , а носители всех простых α -концов области Δ_i одноточечны. Поскольку же каждое отображение $f_i:D_i \to \Delta_i$ продолжается до гомеоморфизма замкнутых областей, то, разумеется, найденное выше отображение f_i не может осуществлять биекцию пространств αD_i и $\alpha \Delta_i$.

Завершая построение примера, в качестве областей D и Δ рассмотрим

$$D = \bigcup_{i=o}^m D_i$$
 и $\Delta = \bigcup_{i=o}^m \Delta_i$, где D_0 и Δ_0 означают множества

$$D_0 = \left\{ x : \frac{1}{m} < x_1 < 2, \ 0 < x_2 < 2, \ \left| x_3 \right| < 1 \right\} \cup \left\{ x : x_1 = \frac{1}{m}, \ \frac{2i - 2}{m} < x_2 < \frac{2i}{m}, i = 1, ..., m, \ \left| x_3 \right| < 1 \right\}$$

STATE OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE

И

$$\Delta_0 = \left\{ y : \frac{1}{m} < y_1 < 2, \ 0 < y_2 < 2, \ |y_3| < 1 \right\} \cup \left\{ y : y_1 = \frac{1}{m}, \ \frac{2i-2}{m} < y_2 < \frac{2i}{m}, \ i = 1, ..., m, \ |y_3| < 1 \right\}.$$

Определим гомеоморфизм $f: D \to \Delta$, полагая f(x) = x при $x \in D_0$ и $f(x) = f_i(x)$ при $x \in D_i$, i = 1,...,m.

Совершенно ясно, что f является отображением, квазиконформным в (p,q)-среднем. В то же время, в силу построений это отображение не может осуществлять биекцию множеств простых α -концов областей D и Δ ни при каком $2 < \alpha \le 3$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Caratheodory C. Über die Bergenyung einfach zusammenhängender Gebite // Math. Ann. 1913. 73. S. 323-370.
- 2. Зорич В. А. Соответствие границ при Q-квазиконформных отображениях mapa // Докл. АН СССР. 1962. 145. № 6. С. 1209-1212.
- 3. Гольдштейн В. М., Водопьянов С. К. Метрическое пополнение области при помощи конформной емкости, инвариантное при квазиконформных отображениях. // Докл. АН СССР. 1978. 238. № 5. С. 1040-1042.
- 4. Кругликов В. И., Пайков В. И. Соответствие границ для пространственных отображений, квазиконформных в среднем. Донецк: Донец. ун-т, 1983. 63 с. (Рукопись деп. в УкрНИИНТИ, № 371).
- 5. Näkki R. Prime ends and quasiconformal mappings // J. Anal. Math. 1979. 35. P. 13-40.
- 6. Суворов Г. Д. Обобщённый «принцип длины и площади» в теории отображений. Киев: Наук. думка, 1985. 280 с.
- 7. Gehring F. W. Rings and quasiconformal mappings in space // Trans. Amer. Math. Soc. 1962. 103. № 3. P. 353-393.
- 8. Gehring F. W. Lipschitz mapping and p-capacity of rings in n-space // Advances in the theory of Riemann surfaces. Ann. Math. Studies, 66. Princeton, New Jersey, 1971.
 P. 175-193
- 9. Кругликов В. И. Емкости конденсаторов и пространственные отображения, квазиконформные в среднем // Матем. сб. М., 1986. 130. № 2. С. 185-206.
- 10. Näkki R. Boundary behavior of quasiconformal mappings in n-space // Ann. Acad. Sci. Fenn. Ser. AI. 1970. № 484. P. 1-50.