МАТЕМАТИКА И ИНФОРМАТИКА

Максим Людвигович ПЛАТОНОВ ст. преподаватель кафедры алгебры и математической логики Института математики и компьютерных наук

Александр Николаевич ДЕГТЕВ профессор кафедры алгебры и математической логики Института математики и компьютерных наук, доктор физико-математических наук

Тюменский государственный университет

УДК 510.5

О ВЕРХНИХ ПОЛУРЕШЕТКАХ Р-СТЕПЕНЕЙ ВЫЧИСЛИМЫХ НУМЕРАЦИЙ

АННОТАЦИЯ. В работе доказывается, что верхняя полурешетка рстепеней вычислимых нумераций семейства рекурсивно перечислимых множеств не является нижней и дистрибутивной полурешеткой. Показано, что если p-степень содержит однозначную нумерацию, то в этой полурешетке истинны следующие предложения:

$$(\exists b)(a < b \land (\forall c) (a \le c \le b \Rightarrow c = b));$$
$$(\forall b)(a < b \Rightarrow (\exists c)(a < c < b)).$$

This proved that the upper semilattice p-degrees all computable Numerations family of recursively enumerable sets (RPM) is not lower and distributive semilattice. We show that if the district level of a unique numbering, it semilattice true following suggestions:

$$(\exists b)(a < b \land (\forall c) (a \le c \le b \Rightarrow c = b));$$
$$(\forall b)(a < b \Rightarrow (\exists c)(a < c < b)).$$

Пусть S — непустое семейство подмножеств множества N всех целых неотрицательных чисел. Произвольное сюръективное отображение $\nu: N \!\! \to \!\! S$ называет-

ся нумерацией множества S. Нумерацию ν множества S называют вычислимой, если множество $G_{\nu} = \{\langle n, s \rangle : s \in \nu(n) \}$ является рекурсивно перечислимым, где $\langle n, s \rangle$ — канторовский номер, упорядоченной пары (n, s).

Пусть μ и ν — некоторые нумерации множества S. Нумерация μ p-сводится (сводится позитивно) к нумерации ν и символически обозначается $\mu \leq_p \nu$ [2], если существует p-оператор (оператор перечисления) Φ такой, что для любого элемента $s \in S$ имеет место:

$$\mu^{-1}(s) = \Phi(\nu^{-1}(s)),$$

где $\mu^{-1}(s)$ и $\nu^{-1}(s)$ — прообразы (номера) элемента $s \in S$ относительно нумераций μ и ν соответственно.

На интуитивном уровне сводимость нумерации μ к нумерации ν означает, что существует эффективная процедура (алгоритм), позволяющая по любому μ -номеру элемента получать ν -номер этого же элемента.

Отображение $\Phi: P(N) \to P(N)$, где $P(N) = \{X : X \subseteq N\}$, называется p-оператором [3], если существует общерекурсивная функция (OP Φ) f такая, что для любого множества $X \subseteq N$ имеет место:

$$\Phi(X) = \{x : \exists y [y \in D_{f(x)} \& D_y \subseteq X]\},$$

где $D_{f(x)}$ или D_y — конечное подмножество N с каноническим номером n соответственно.

Используя введенные определения, получим следующую формулировку понятия p-сводимости нумераций:

$$\mu \leq_{p} \nu \leftrightarrow \mu^{-1}(s) = \{x : \exists y [y \in D_{f(x)} \& D_{y} \subseteq \nu^{-1}(s)]\}.$$

В случае p-сводимости нумераций можно считать, что $\mu \leq_p \nu$ посредством ОРФ f. Пусть S — семейство рекурсивно перечислимых множеств (РПМ). Как и в случае m-сводимости нумераций [1], отношение \leq_p на множестве $H^0_p(S)$ всех вычислимых нумераций семейства S является квазипорядком. Отношение \leq_p обладает свойством антисимметричности, что позволяет определить понятие p-эквивалентности нумераций. Нумерации μ и ν называются p-эквивалентными и обозначаются как $\mu \equiv_p \nu$, если $\mu \leq_p \nu$ и $\nu \leq_p \mu$. Прямая сумма \oplus двух нумераций μ и ν есть нумерация μ \oplus ν , которая определяется так:

$$(\mu \oplus \nu)(y) = \begin{cases} \mu(x), & \text{если } y = 2x; \\ \nu(x), & \text{если } y = 2x + 1. \end{cases}$$

Любые две нумерации имеют точную верхнюю грань, которой и является их прямая сумма. Как известно [1], множество H^0_p (S) является замкнутым относительно операции \oplus . Это означает, что если нумерации являются вычислимыми, то их прямая сумма также является вычислимой нумерацией.

Класс $[\nu]_{\rho}$ всех нумераций, ρ -эквивалентных нумерации ν , называется ρ -стеленью нумерации ν : $[\nu]_{\rho} = \{ \mu : \mu \equiv_{\rho} \nu \}$. Фактор-множество $H_{\rho}^{0}(S)/\equiv_{\rho}$ по отношению ρ -эквивалентности вычислимых нумераций есть множество классов ρ -эквивалентных нумераций или ρ -степеней, которое обозначим через $L_{\rho}^{0}(S)$. Квазипорядок \leq_{ρ} индуцирует отношение частичного порядка на множестве $L_{\rho}^{0}(S)$, которое будем обозначать символом \leq , следующим образом: $[\mu]_{\rho} \leq [\nu]_{\rho} \Leftrightarrow \mu \leq_{\rho} \nu$. Прямая сумма \oplus двух ρ -степеней $[\mu]_{\rho}$ и $[\nu]_{\rho}$ есть ρ -степень $[\mu \oplus \nu]_{\rho}$, задаваемая так:

$$\left[\mu \oplus \nu \right]_p (y) = \begin{cases} \left[\mu \right]_p (x), \text{ если } y = 2x; \\ \left[\nu \right]_p (x), \text{ если } y = 2x + 1. \end{cases}$$

Понятно, что точной верхней гранью любых двух p-степеней $[\mu]_{
ho}$ и $[
u]_{
ho}$ есть p-степень $[\mu \oplus \nu]_p$. Таким образом, L_p^0 (S) множество — верхняя полурешетка p-степеней вычислимых нумераций семейства S. Отметим тот факт [1], что $L^0_{_{\cal P}}({\sf S})$ — идеал верхней полурешетки всех нумераций семейства, т.е. подмножество, содержащее вместе с каждым элементом все меньшие его. В частности, L_p^0 (S) имеет наибольший элемент ${f 1}$ и счетное число минимальных, например, p-степени однозначных нумераций семейства S.

Пусть $\mu: N \to S_0$ и $\nu: N \to S_1$ — нумерации некоторых произвольных семейств рекурсивно перечислимых множеств (РПМ) $S_0 = \{A_i\}_{i \in N}$ и $S_1 = \{B_i\}_{i \in N}$, $S_0 \subseteq S_1$. Говорят, что нумерация μ семейства S_0 p-сводится к нумерации ν семейства и символически обозначают $\mu \leq_{\rho} \nu[2]$, если существует ОРФ f такая, что выполнены следующие условия:

а) для любого множества $A_i \in S_0$ имеет место:

$$(\forall A_i \in S_0)(\exists B_j \in S_1)(\mu^{-1}(A_i) = \{x : \exists y[y \in D_{f(x)} \& D_y \subseteq \nu^{-1}(B_j)]\});$$

b) не существует множества $B_k \in S_1$, $B_k \neq B_j$, что $B_k \leq_{\rho} B_j$. **Лемма 1.** Пусть v_0 и v_1 — нумерации семейств РПМ S_0 и S_1 таких, что $S_0 \cap S_1 = \emptyset$, а μ_0 и μ_1 — нумерации подсемейств $S'_0 \subseteq S_0$ и $S'_1 \subseteq S_1$. Если $\mu_0 \oplus \mu_1 \leq_p$ $\nu_0 \oplus \nu_1$, то $\mu_0 \leq_p \nu_0$ и $\mu_1 \leq_p \nu_1$. Доказательство. Пусть $\mu_0 \oplus \mu_1 \leq_p \nu_0 \oplus \nu_1$ посредством ОРФ f. Для опреде-

ленности будем считать, что:

$$(v_0 \oplus v_1)(y) = \begin{cases} v_0(x), \text{ если } y = 2x; \\ v_1(x), \text{ если } y = 2x+1. \end{cases}$$

$$(\mu_0 \oplus \mu_1)(n) = \begin{cases} \mu_0(x), \text{ если } n = 2m; \\ \mu_1(x), \text{ если } n = 2m+1. \end{cases}$$

Докажем существование $OP\Phi$ g, посредством которой осуществляется p-сводимость μ_0 к ν_0 . Рассмотрим произвольное натуральное четное число $y\!=\!2\mathrm{x}$. Такому выбору соответствует, например, случай, когда $\mu_0 \oplus \mu_1 \leq_{p} \nu_0$. Используя данное число в качестве канонического номера конечного множества, определим элементы этого множества: $D_{f(y)} = \{\alpha_0, \alpha_1, ..., \alpha_k\}$. Далее, каждому $\alpha_i (0 \le i \le k)$ соответствует конечное множество $D_{\alpha} = \{\alpha_0, \alpha_1, ..., \alpha_k\}$. Любое $\beta_i \in D_{\alpha}$ число $(0 \le j \le l)$ является некоторого РПМ семейства $S_{\scriptscriptstyle 0}$, и поэтому нечетные числа из $D_{\scriptscriptstyle lpha}$ в p-сведении $\mu_0 \oplus \mu_1$ к ν_0 не будут играть никакой роли. Если рассмотреть множества $D_{\gamma_i} = \{ \beta_i : \beta_j \in D_{\alpha_i} \& \beta_j \equiv 0 \pmod{2} \}$ и $D_{g(n)} = \{ \gamma_0, \gamma_1, ..., \gamma_s \}$ получим, что существует ОРФ g, посредством которой $\mu_0 \leq_{\rho} \nu_0$.

Аналогичным образом можно показать, что $\mu_1 \leq_p \nu_1$ посредством некоторой ОРФ h. □

 $\mathbf{Лемма}\ \mathbf{2}.\ \Pi$ усть $\mathbf{v_0}\ u\ \mathbf{v_1}$ — нумерации семейств РПМ $\mathbf{S_0}\ u\ \mathbf{S_1}$ таких, что $S_0 \cap S_1 = \emptyset$, причем $v_1 - o$ днозначная нумерация. Если $\mu \leq_{\rho} v_0 \oplus v_1$, то $\mu \equiv_{\rho} \mu_0 \oplus \mu_1$, причем $\mu_0 \leq_p \nu_0 u \mu_1 \leq_m \nu_1$.

Доказательство. Пусть $\mu \leq_p \nu_0 \oplus \nu_1$ посредством ОРФ f и $D_{f(y)} = \{\alpha_0, \alpha_1, ..., \alpha_k\}$. Если нашлось $\alpha_i \in D_{f(y)}$ такое, что $D_{\alpha_i} = \{y\}$, $\mu(x) = (\mu_0 \oplus \mu_1)(y)$, то и полагаем $D_{g(x)} = \{\gamma\}$, где $D_{\gamma} = \{y/2\}$, если y четное число, и относим его к множеству R_0 . Если y нечетное число, то полагаем h(x) = y и относим его к множеству R_1 . Если же такого $\alpha_i \in D_{f(y)}$ не нашлось, то заведомо $\mu(x) \in R_0$. Поэтому, пусть $\beta_0, \beta_1, ..., \beta_s$ ($s \leq k$) — все те числа $\alpha_i (i \leq k)$, что выполнено условие $x \in \beta_i$, то x четное число, и при этом окажется, что $D_{\beta} = \{2y_0, 2y_0, ..., 2y_t\}$ ($t \leq s$), то полагаем $D_{\gamma_i} = \{y_0, y_0, ..., y_t\}$, и $D_{g(x)} = \{\gamma_0, \gamma_0, ..., \gamma_s\}$ а число x относим к R_0 .

Понятно, что R_0 и R_1 рекурсивные множества, и, предполагая их бесконечность, пусть $\{a_i\}_{i\in N}$ и $\{b_i\}_{j\in N}$ — прямые пересчеты множеств R_0 и R_1 . Определим теперь две нумерации μ_0 и μ_1 так: $\mu_0(n) = \nu_0(a_n)$ и $\mu_1(n) = \nu_1(b_n)$. Понятно, что $\mu_1 \leq_m \nu_1$ посредством ОРФ $\tilde{h}(n) = h(b_n)$, а $\mu_0 \leq_m \nu_1$ посредством ОРФ $\tilde{g}(n) = g(a_n)$. Очевидно также, что нумерация $\mu_0 \oplus \mu_1$ удовлетворяет заключению леммы. Если же, скажем, $R_0 = \{a_0, a_1, a_{m-1}\}$, то тогда пусть $\tilde{g}(n) = g(a_n)$, где $p \equiv n \pmod m$. Γ

Пусть R — РПМ отлично от \varnothing и N. Определим нумерацию ν_R следующим образом:

$$v_R(x) = \begin{cases} 0, \text{ если } x \in R; \\ \emptyset, \text{ если } x \notin R. \end{cases}$$

Понятно, что ν_R — вычислимая нумерация множества $\{\{0\},\emptyset\}$.

Лемма 3. Для любых РПМ A и B: $\nu_B \leq_{\rho} \nu_A \leftrightarrow B \leq_{\rho} A$

Доказательство. Необходимость утверждения леммы непосредственно следует из самого определения p-сводимости. Обратно, пусть $B \leq_p A$ посредством ОРФ f, a и b — фиксированные элементы из A и A. Если $D_{f(y)} = \{\alpha_0, \alpha_1, ..., \alpha_k\}$, то $x \in B \Leftrightarrow D_\alpha \subseteq A$ для подходящего i $(0 \leq i \leq k)$. Но возможно, что $x \in B$ и $D_\alpha \subseteq A$ для некоторого $j(0 \leq j \leq k)$. Поэтому нельзя утверждать, что $v_B \leq_p v_A$ посредством ОРФ f. Исправляя эту погрешность, пусть $D_{\beta_i} = D_{\alpha_i} \cup \{a\}$ и для каждого множества $\{a_1, a_2, a_k, b\}$ такого, что $D_\alpha \in \alpha$ определим $D_\gamma = \{\alpha_1, \alpha_2, \alpha_n, b\}$ Но число таких множеств в точности m и равно произведению мощностей множеств $D_{\alpha_0}, D_{\alpha_1}, ..., D_{\alpha_k}$, т.е. $y = \gamma(s)(1 \leq s \leq m)$. Теперь положим $D_{f(y)} = \{\beta_1, \beta_k, \gamma_1, ..., \gamma_s\}$.

Проверим, что $v_{\mathcal{B}} \leq_{\rho} v_{\mathcal{A}}$ посредством ОРФ g. Если v (x)={0}, то $D_{a_i} \subseteq \mathcal{A}$ для подходящего i ($0 \leq i \leq k$). А это значит, что и $D_{\beta_i} \subseteq \mathcal{A}$. Но $D_{\beta_i} \cap \mathcal{A} \neq \emptyset$, т.к. $a \in D_{\beta_i}$ ($0 \leq j \leq k$). С другой стороны, в каждом D_{γ} окажется элемент из D_{α_i} и опять $D_{\gamma} \cap \mathcal{A} \neq \emptyset$. Если же v (x) $\neq \emptyset$, то в каждом D_{α_i} , значит и в каждом D_{β_i} , есть элемент из \mathcal{A} . По этой же причине, существует множество { a_1 , ..., a_k }, как выше, содержащееся в \mathcal{A} . Поэтому, $D_{\gamma} \subseteq \mathcal{A}$ для подходящего s($0 \leq s \leq m$). \square

В предложениях ниже, ряд утверждений о верхней полурешетке L_p^0 (S) вычислимых нумераций семейства РПМ S можно перенести на случай верхней полурешетки $L_p(S)$ p-степеней вычислимых нумераций семейства РПМ S. Вот некоторые из них.

Предложение 1. Верхняя полурешетка $L_p(S)$

а) не является решеткой;

b) не является дистрибутивной полурешеткой.

Доказательство. (а) Так как не является решеткой [3], то пусть \mathbf{a} и \mathbf{b} — две рекурсивно перечислимые p-степени, не имеющие точной нижней грани, $A \in \mathbf{a}$, $B \in \mathbf{b}$, $\nu_0 = \nu_A \oplus \varepsilon$, $\nu_1 = \nu_B \oplus \varepsilon$, μ — нумерация РПМ R такая, $\mu \leq \nu_0$ что и $\mu \leq \nu_1$.

Согласно лемме 1, найдутся нумерации μ_0 и μ_1 семейств $\{\{0\},\varnothing\}$ и S/ $\{\{0\},\varnothing\}$ такие, что $\mu=\mu_0\oplus\mu_1$, $\mu_0\leq\nu_0$ и $\mu_1\leq\nu_1$. Тогда, $\mu_1=\varepsilon$ и μ_0 имеет вид μ_C некоторого РПМ С, т.е. $\mu=\mu_C\oplus\varepsilon$. Согласно лемме 2, $\mu_C\leq\nu_A$ и $\mu_C\leq\nu_B$. По лемме 3, $C\leq_\rho A$ и $C\leq_p B$, а по выбору РПМ A и B, существует РПМ D такое, что $D\leq_p A$, $D\leq_p B$ и $C<_p D$. Тогда, $\nu_D\oplus\varepsilon\leq\nu_0$, $\nu_D\oplus\varepsilon\leq\nu_1$ и $\mu<\nu_D\oplus\varepsilon$. Итак, p-степень нумерации μ не является точной нижней гранью p-степеней ν_0 и ν_1 , т.е. L_p^0 (S) не является нижней полурешеткой.

(b) Так как P не является дистрибутивной полурешеткой [3], то пусть \mathbf{a} , \mathbf{b} и \mathbf{c} такие p-степени, что $\mathbf{c} \leq \mathbf{a} \oplus \mathbf{b}$, но не существует таких p-степеней \mathbf{c}_0 и \mathbf{c}_1 , что $\mathbf{c} = \mathbf{c}_0 \oplus \mathbf{c}_1$, $\mathbf{c}_0 < \mathbf{a}$ и $\mathbf{c}_1 \leq \mathbf{b}$. Пусть $A \in \mathbf{a}$, $B \in \mathbf{b}$, $C \in \mathbf{c}$, $\nu_0 = \nu_A \oplus \varepsilon$, $\nu_1 = \nu_B \oplus \varepsilon$, $\nu = \nu_0 \oplus \nu_1$,

 $\mu = \nu_{\rm C} \oplus \varepsilon$ и $\mu \le \nu_{\rm 0} \oplus \nu_{\rm 1}$.

Предположим, что $\mu = \mu_0 \oplus \mu_1$, $\mu_0 \le \nu_0$ и $\mu_1 \le \nu_1$. По лемме 2 $\mu_0 = \nu_D \oplus \varepsilon$ и $\mu_1 = \nu_D \oplus \varepsilon$ для подходящих РПМ D и E. По лемме 3 $D \le \rho A$ и $E \le \rho B$. Но $\mu \equiv_m (\nu_D \oplus \nu_E) \oplus \varepsilon$, т.к.

 $\mu \leq_m (\nu_D \oplus \nu_E) \oplus \varepsilon$ посредством ОРФ f:

$$f(4x)=(4x)$$
; $f(4x+2)=4x+1$; $f(2x+1)=4x+2=4x+3$

и $(\nu_D \oplus \nu_E) \oplus \varepsilon \leq_m \mu$ посредством ОРФ g:

g(4x)=(4x); g(4x+1)=4x+2; g(4x+2)=g(4x+3)=2x+1.

Отсюда следует, что $C = {}_m D \oplus E$. Аналогично, $\nu_0 \oplus \nu_1 \equiv {}_m (\nu_A \oplus \nu_B) \oplus \varepsilon$, а т.к. $\mu \leq \nu_0 \oplus \nu_1$, то $C \leq {}_m A \oplus B$. Это противоречит свойствам РПМ A, B и C. \Box

Предложение 2. Если $\mathbf{a} \in L^0_p(S)$ — минимальная p-степень, содержащая однозначную нумерацию, то в $L^0_p(S)$ истинны следующие предложения:

$$(\exists b)(a < b \& (\forall c) (a \le c \le b \rightarrow c = b));$$
$$(\forall b)(a < b \rightarrow (\exists c)(a < c < b)).$$

Доказательство. Вместо степеней будем иметь дело с их представителями.

(а) Пусть B имеет минимальную p-степень в L_p^0 (S) [3] и ε — однозначная вычислимая нумерация S/{{0}, Ø} (такие нумерации существуют [1]). Если $\mu \equiv_m \nu_B \oplus \varepsilon$, где ε (x)= ν (x+2), $\nu \leq \mu$ то, что очевидно, но $\mu \not\preceq \nu$, т.к. B нерекурсивное РПМ. Предположим, что $\nu \leq \nu_0 \leq \mu$. По лемме 2 $\nu_0 = \nu_A \oplus \varepsilon$ для подходящего РПМ A. По лемме 3 $A \leq_p B$ и, поэтому, A рекурсивное множество или $A \equiv_p B$. B первом случае $\nu_A \oplus \varepsilon \equiv_m \nu$, а во втором — $\nu_A = \nu$.

(b) Пусть нерекурсивное РПМ B такое, что под p-степенью B нет минимальных p-степеней [3], $\mu = \nu_B \oplus \varepsilon$ и $\nu < \nu_B \le \mu$. По леммам 2 и 3 $\nu_0 = \nu_A \oplus \varepsilon$, причем A нерекурсивное РПМ и $A \equiv_{\rho} B$. По выбору РПМ B, найдется нерекурсивное РПМ C

такое, что $C \equiv {}_{\rho}B$. Но тогда $\nu < \nu_{c} \oplus \varepsilon < \mu$.

Перейдем теперь к p-сводимости вычислимых нумераций семейства $F = \{\emptyset\{0\}, \{1\}, ...\}$, обозначая через L(F) верхнюю решетку p-степеней таких нумераций. Интерес к ним связан с возможностью отождествить эту нумерацию с ЧРФ α так:

$$\alpha(x) = \begin{cases} n, \text{ если } v(x) = \{n\}; \\ \emptyset, \text{ если } v(x) = \emptyset. \end{cases}$$

Поэтому на L(F) можно смотреть как на верхнюю полурешетку p-степеней ЧРФ, которые определены хотя бы в одной точке с областью значения равной N [4].

Прежде всего отметим, что L(F) имеет наименьший элемент $\mathbf{0}$, который состоит из всех ЧРФ, указанных выше, с рекурсивными областями определения. Поэтому минимальными элементами $\mathbf{a} \in L(F)$ называют такие, что

$$0 < a & (\forall b)(0 < b \leq a \rightarrow b = a).$$

Такие степени существуют. Действительно, пусть ЧРФ α такова, что $x\neq y \rightarrow \alpha(x) \neq \alpha(y)$, причем значения $\alpha(x)$ и $\alpha(y)$ определены. В [5] доказано, что ЧРФ α имеет минимальную m-степень тогда и только тогда, когда область определения D_a обладает следующим свойством: D_a нерекурсивно и для любого РПМ B такого, что $D_a \subseteq B$ и B/D_a не является РПМ, существует рекурсивное множество R, для которого $D_a \subseteq R \subseteq B$. В то же время нетрудно показать, что $\beta \leq_p \alpha \rightarrow \beta \leq_m \alpha$. В частности, p-степень ЧРФ α состоит из одной m-степени. Полурешетка L(F) также содержит наибольший элемент 1-p-степень универсальной ЧРФ φ в следующем смысле: $\beta \leq_m \varphi$ для любой ЧРФ β . Такие универсальные ЧРФ существуют, например, $\varphi((x,y)) = \varphi_x(y)$ где φ_x — одноместная ЧРФ с клиниевским номером x.

Следующие предложения являются аналогами предложений 1 и 2. Надо лишь в формулировке предложения 2 заменить а на $\mathbf{0}$, а в доказательствах положить $\varepsilon(x) = x + 1$, а вместо v_R взять ЧРФ

$$v_R(x) = \begin{cases} 0, \text{ если } x \in R; \\ \uparrow, \text{ если } x \notin R. \end{cases}$$

Предложение 3. Верхняя полурешетка L(F) не является нижней и дистрибутивной полурешеткой.

Предложение 4. В L(F) истинны следующие предложения:

$$(\exists b)(a < b \& (\forall c) (a \le c \le b \rightarrow c = b));$$
$$(\forall b)(a < b \rightarrow (\exists c)(a < c < b)).$$

Открытым остается следующий вопрос: верно ли в $L^0_{_{P}}$ (S) предложение

$$(\exists a)(\exists b)((a \neq b \& b \neq a) \& a \oplus b = 1)?$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Ершов Ю.Л. Теория нумераций. М.: «Наука», 1977.
- Дегтев А.Н. О сводимостях нумераций // Математический сборник. 1980. Т. 112.
 № 2. С. 207-219.
 - 3. Дегтев А.Н. О tt-n m-степенях // Алгебра и логика, 1973. Т. 12. № 2. С. 143-161.
- Дегтев А.Н. Сакунова Е.С. О сводимостях частично рекурсивных функций // Сиб. Мат. Ж. 2000. Т. 41. № 6. С. 1345-1349.
- 5. Дегтев А.Н. Сводимость частично рекурсивных функций // Сибирский математический журнал, 1977. Т. 18. № 4. С. 765-774.