© ANNA V. RUSEIKINA, EVGENY O. GALENKO, LEONID A. SOLOVIEV, ANNA M. ZHERNOVNIKOVA

adeschina@mail.ru, jonny3452@mail.ru, leosol@icct.ru, annushka_kot@mail.ru

UDC 546.06; 544.22

PHYSICOCHEMICAL ANALYSIS OF THE 2SrS: $1\ln_2 S$ $1\ln_2 S$ ²; $1Ag_2$ ^{*x*}</sup>_{*NS*} $(Ln = La, Nd, Dy, Er, Lu)$ *COMPOUNDS*^{*}

SUMMARY. The phase composition of the 2SrS: $1Ln_2S_3$: $1Ag_2S$ (Ln = La, Nd, Er, Lu) *samples annealedat 1,170 is determined by theX-ray study andmicrographic investigation;* the conoids in the SrS-Ln₂S₃-Ag₂S triangles are preliminarily determined. The 2SrS: 1Ln₂S₃: 1Ag₂ ${}_{x}S$ (Ln = La, Nd, Er, Lu) samples contain three basic phases: SrS, Ag₂S, and SrLn₂S₄. The compositions are within the SrS-SrLn₂S₄-Ag_{2x}S triangle, the conoids in the SrS-Ln₂S₃-Ag₂S *trianglespass between the Ag2.fl-SrLn2S⁴ phases. No new compounds, such as SrLnAgS³ (Ln* $= La, Nd, Lu$, are formed. Having studied the cooled samples from the Ag, S-Dy, S₃-SrS melt *system in the ratios of1:2; 1:1:3; 2:1:2; 1:1:1, we discoverthephasesforming the triangle* and occurring within the systems, making the triangle: Ag_2 -xS, $AgDvS_2$, $SrDv_2S_4$. The samples *have a set ofreflexes not characteristic ofany ofthe main phases occurring in the system; the maximum intensity isregistered in the ratio of1:1:2, which allows us topre-assign the chemical formula ofSrDyAgS³ to the forming phase. The phase composition of 1:2:1 sample is the* following: AgDyS₂ and SrDy₂S₄. The conoid in the SrS-Dy₂S₃-Ag₂S triangle goes between the *AgDyS2-SrDy2S⁴ phases.*

KEY WORDS. X-ray study, micrographic investigation, ALnBS³ (A = Sr, Ba, Pb, Eu; Ln = La-Lu) complex sulfides, quasi-triangularsystems, phase equilibria.

The poorly studied systems containing d-, f-elements are prospective targets to search for new complex sulfide phases where really significant properties should be predicted. Derived in the ratio of the original sulfides of $1\text{Ln}_2\text{S}_3$: 2AS : $1\text{Cu}_2\text{S}_3$, LnBS₃ the sulfides are formed in the quasi-triangular systems of AS-Ln₂S₃-Cu₂S $(A = Sr, Ba, Pb, Eu; Ln = La-Lu) [1], [2], [3], [4], [5], [6], [7].$ The phase equilibria in isothermal and polythermal sections in the BaS-Ln₂S₃-Cu₂S (Ln = La,Gd, Dy) [1], SrS-Ln₂S₃-Cu₂S (Ln = La-Lu) [2], EuS-Ln₂S₃-Cu₂S (Ln = La, Nd) [8] systems were studied comprehensively. At high-temperature synthesis (1,070-1,320 K), a change in structure type of the $AL_nCuS₃$ -compounds of the orthorhombic system, BaLaCuS₃ ST [2] or Ba₂MnS₃ ST [4], which are specific to Ln = La-Nd \rightarrow Eu₂CuS₃

^{*} The work was financially supported by the Ministry of Education and Science of the Rf within the Federal Target Program *Scientific andAcademic StaffofInnovative Russia* (No. 14. B37.21.1184) and Multisubject Integration Project of SB RAS No. 38, National Target Research (code 3.3763. 2011 (7-12))

 $(Ln = Sm-Dy)$ [2], [3], [5] ST \rightarrow KZrCuS₃ (Ln = Er-Lu) [2], [3] ST, is observed in the rare earth element series.

The similar properties of $Cu₂S$ and Ag₂S (argentum and cuprum are similar in electrons) suggest that the sulfides of isoformular composition, $ALnAgS₃$, are formed in the AS-Ln₂S₃-Ag₂S systems, thus, BaLnAgS₃ compound [7], [9] is formed in the $BaS-Ln_2S_3-Ag_2S$ systems.

The published data on the nature of phase equilibria and compound formation in the SrS-Ln₂S₃-Ag_{2-x}S (Ln = La-Lu) systems were not found. The quasitriangular SrS-Ln₂S₃-Ag_{2-x}S systems are limited by the binary Ag_{2-x}S-Ln₂S₃, $Ag_{2-x}S-SrS$, Ln_2S_3-SrS systems. The data on the $Ag_{2-x}S-SrS$ systems were not found. The congruently melting compounds of the monoclinic and tetragonal AgLnS₂ (Ln = Sm, Gd-Yb), cubic (NaCl ST) AgLnS₂ (Ln = Er-Lu) systems are formed in $Ag_{2x}S-Ln_2S_3$ [10]. The incongruently melting $SrLn_2S_4$ compounds of the cubic Th₃P₄ (Ln = La-Gd) ST system and the congruently melting SrLn₂S₄ $(Ln = Tb-Lu)$ compounds of the orthorhombic $CaFe₂O₄ ST$ system are formed in $Ln₂S₃-SrS$ [2].

As the structure of compounds in the lanthanide family can change, to create an integrated view of the occurrence of the S_t LnAgS₃ type compounds, we should analyze the samples from three different areas in the rare earth element series: La, Nd, Dy, Er, Lu, after the rare earth element series is j, S and s full — close to Nd, Gd and Ho [11].

The purpose of this paper is to determine whether new compounds of the $SrLnAgS₃$ type occur in the SrS-Ln₂S₃-Ag_{2-x}S (Ln = La, Nd, Dy, Er, Lu) systems or not.

The experiment. Exactly stoichiometric Ag₂S is not formed, the composition of the sulfide phase is $Ag_{1.99 \cdot 1.97}S$ [10]. The $Ag_{1.985}S$ compound is prepared from elementary Ag of ¹¹ -4 extra pure grade and S of 15-3 extra pure grade by the direct synthesis method.

The melted samples of the composition: 2SrS: $1\text{Ln}_2\text{S}_3$: $1\text{Ag}_1\text{-gg}_5S$ (Ln = La, Nd, Dy, Er, Lu) were obtained by the technique described in [12]. The samples were annealed at $1,170 \text{ K}$ in the vacuum-sealed quartz ampoules during 2 months. The microstructural analysis (MSA) of the polished samples was carried out using the *METAMLV-31* optical metallographic microscope.

The X-ray study was carried out using the*PANalyticalX'PertPRO* diffractometers equipped with the *PIXcel* and *DRON 7* detectors (CuKa emission, Ni-filter). The powder samples were prepared by triturating with octane in the agate mortar. The X-ray diagrams were taken in the following range of diffraction angles: $5^{\circ} \leq 20 \leq 140^{\circ}$. The phase identification was performed using the ICDD PDF4+ 2012 database. The lattice parameters oflower crystal systems were determined by the ITO program [13]. The parameter specification and quantitative phase analysis were performed on the basis of powder data by the quasi-Newton method for the derivative difference minimization (DDM) [14].

Results and **discussion**. The geometric characteristics to energetic characteristics ratio exercises a decisive influence on the complex compound formation. In accordance with "the characteristic-to-characteristic ratio rule", the quantity differences of the Sr-Ln-Ag (La-Lu) component characteristic higher than 15% predetermine the probability of a new compound formation [15]. The differences in the ionic radii (Δr) $Ag^{+}(rAg^{+}= 0.67 \text{ Å}, \text{EN } 1.93 \text{ [16], [17])}$ and Ln³⁺ are 35-22 %; the electronegativity difference is (EN) 34-22 % (Ln = La-Lu). The differences in Δr and EN Sr²⁺ (rSr²⁺ = 1.18 Å (CN = 6), EN 0.92) and Ag⁺ are 43 and 52 %, and for Sr^{2+} and Ln^{3+} , they are from 13 to 27 % and from 28 to 39 %, respectively.

In the systems forming the SrS-Ln₂S₃-Ag_{2-x}S (Ln = La, Nd) triangle, the following sulfides congruently melt: SrS, Ln_2S_3 , $Ag_{2-x}S$, SrLn₂S₄, so in the ternary system, it is theoretically possible to draw a conoid joining the conjugate phases Ag_2 -xS-SrLn₂S₄. According to RFA (Fig. 1) and MSA, $2SrS:1Ln₂S₃:1Ag_{2-x}S$ (Ln = La, Nd) samples contain three major phases.

$$
2Sr S:1La_2S_3:1Ag_{2-x}S:
$$

62.2% SrLa₂S₄, *I*-43d, a = 8.78473 E;

13.1% Ag₂S, P₂,/c, a = 4.2264(6), b = 6.9294(9), c = 9.534(1) Å, β = $3125.59(1)$ °;

24.7% SrS, Fm3m, $a = 6.0062(1)$ Å.

$$
\underline{\text{2SrS:1Nd}_{2}\underline{S}_{3}:1\text{Ag}_{2-x}\underline{S}:}
$$

59.3% SrNd₂S₄, I-43d, a = 8.64294(4) Å;

20.8% Ag₂S, P₂₁/c, a = 4.2280(4), b = 6.9286(8), c = 9.534(1) A, β = $125.58(1)$ °;

19.9% SrS, Fm3m, a = 5.9878(3) A.

The mass ratios of the identified phases are given without the amorphous component and unidentified phases appearing in the difference curve. Due to imperfect phase stoichiometry, the metals in the phases are partially substituted (according to the lattice parameter variations); to make a consistent evaluation of amorphous and unidentified component quantity is difficult.

The 2SrS:1Ln₂S₃:1Ag_{2-x}S (Ln = La, Nd) compositions lie within the SrS-SrLn₂S₄- $Ag_{2x}S$ triangle, the conoid goes between the $Ag_{2x}S-SrLn_{2}S_{4}$ phases. No new compounds of the SrLnAgS₃ type are formed in the SrS-Ln₂S₃-Ag_{2-x}S (Ln = La, Nd) systems.

As the SrS, Ln_2S_3 , Ag_2 , S , $StrLn_2S_4$, $AgLnS_2$ compounds congruently melt in the systems forming the SrS-Ln₂S₃-Ag_{2-x}S (Ln = Dy, Er, Lu) triangle, in the ternary system it is theoretically possible to draw a conoid joining the conjugate phases: $AgLnS_2-SrLn_2S_4$, $Ag_{2-x}S-SrLn_2S_4$, $AgLnS_2-SrS$.

The $2SrS: 1Ln₂S₃: 1 Ag_{2-x}S$ compositions lie on the AgLnS₂-SrS conoid. According to RFA, the mass ratios, s.g. (space group), phase composition and u.n. parameters of identified phases in the $2SrS:1Ln₂S₃:1Ag_{2-x}S$ (Ln = Er, Lu) samples annealed at $1,170$ K are as follows (Fig. 1):

$2SrS:1Er₂S₃:1Ag_{2-x}S:$

47.0% SrEr₂S₄, P_{nma}, a = 11.9590(4), b = 3.9569(2), c = 14.2333(5) Å; 21.7% Ag₂S, P_{2₁/c, a = 4.2267(3), b = 6.9277(6), c = 9.530(1) Å, β =} $125.59(1)$ °;

23.3% SrS, Fm3m, $a = 5.9840(2)$ Å;

8.1%Er₂SO₂, P-3m1, a = 3.7613(1), c = 6.5456(2) Å.

 $2SrS: 1Lu₂S₃: 1Ag_{2-x}S:$

68.2% SrLu₂S₄, P_{nma}, a = 11.8972(1), b = 3.92357(5), c = 14.1187(2) Å;

29.6% Ag₂S, P₂₁/c, a = 4.2270(2), b = 6.9280(4), c = 9.5321(6) Å, β = $125.58(1)$ °;

2.2% SrS, Fm3m, $a = 5.9840(6)$ Å.

According to RFA, the $2SrS:1Ln₂S₃:1Ag_{2-x}S$ (Ln = Er, Lu) samples belong to the $SrS-TLn₂S₄-Ag₂-xS triangle$ (for Er, there is an oxisulfide inclusion), which fits the MSA data. In the metallographic samples, the needle formations permeate through the SrS phase, indicating the decomposition of SrS-based solid solutions (SS). Thus, the conoid goes between the $Ag_{2-x}S-SrLn_{2}S_{4}$ phases.

According to the differential diffraction pattern of the $2SrS:1Lu_2S₃:1Ag_{2x}S$ sample in the SrS-Ln₂S₃-Ag_{2-x}S system, no new compound formation is observed, and in the diffraction pattern of the $2SrS:1Er₂S₃:1Ag_{2-x}S$ sample, there are unidentified reflexes which are specific to none of the phases present in the system.

To determine the occurrence or non-occurrence ofnewphases and to predetermine the quasi-binary sections in the SrS-Dy₂S₃-Ag_{2-x}S system, the phase composition of the samples cooled after melting (Fig. 1-3) was determined by the MSA and RFA methods as follows: p.1 ($1Ag_{2x}S: 2Dy_2S_3: 1SrS$); p. 2 ($1Ag_{2x}S: 1Dy_2S_3: 2SrS$); p. 3 $(1Ag_{2x}S:1Dy_2S_3:3SrS); p.4 (2Ag_{2x}S:1Dy_2S_3:2SrS); p.5 (1Ag_{2x}S:1Dy_2S_3:1SrS).$ The phases forming the SrS-Dy₂S₃-Ag_{2-x}S triangle were in the samples, and Ag_{2-x}S, $AgDyS₂$, Sr $Dy₂S₄$ were identified in the systems making a triangle. There is a set of reflexes, which are specific to none of the phases in the system and which cannot be obtained by their addition, in the samples of p , 2 , p , 3 , p , 4 , p , 5 . The comparison of the diffraction patterns disclosed that the sample of p.2 had the maximum intensity of these lines (Fig. 1). In the metallographic samples, a new phase is represented by the bright field permeated with honeycomb formations. The relationship between the basic sulfides in the sample composition is presented as $1Ag_{2x}S: 1Dy_2S_3: 2SrS$, which allows pre-attributing the chemical formula of $SrDyAgS₃$ to a resulting phase.

According to RFA and MSA, the samples of p. 1, p. 4 are two-phase: $AgDyS₂ +$ $SrDy₂S₄$ and $1Ag_{2-x}S + a$ new phase, respectively, and the sample of p. 5 is three-phase: $AgDyS_2 + SrDy_2S_4 + a$ new compound. In the metallographic samples, there are the $SrDy_2S_4$ primary crystals, up to 15x200 μ m in size, and the eutectics between the AgDyS₂ and SrDy₂S₄ phases in the sample of p.1; there are grains of a new phase, up to 30×130 μ m in size, and the eutectics between a phase and Ag₂.xS in the sample of p. 4; there are the AgDyS₂ grains, up to 10×40 µm in size, SrDy₂S₄ up to 50×180 µm in size, and a new compound, up to 30×120 µm in size (Fig. 2) in the sample of p.5. The X-ray patterns of p. 2 and p. 4 are similar (Fig. 1). In the metallographic sample ofp. 2, a new phase is presented by long oblong primary crystals and eutectic ones forming a honeycomb-shaped pattern. After annealing at 1,170 K, according to the MSA and RFA data, $2SrS: 1Dy_2S_3: 1Ag_{2x}S$ sample is at least three-phase (Fig. 1)/

The samples under investigation are marked with points.

1.40.9% SrDy₂S₄, P_{nma}, a = 11.994(5), b = 3.992(2), c = 14.325(5) E;

2. 59.1% AgDyS₂, P2₁, a = 7.657(3), b = 7.673(3), c = 12.002(6) E, β = 90.44(6)°.

3. an unidentified phase (demonstrated in the difference curve).

The new compound is likely to be stable at high temperatures and to decompose when the temperature falls.

Therefore, it is stated that there is an equilibrium between the $AgDyS_2-SrDy_2S_4$ compounds (Fig. 3). At this stage, it is difficult to determine the nature of the other phase equilibria. Forming new compounds is likely to be specific to the $SrS-Ln₂S₃–Ag₂$. $_{x}S(Ln = Dy, Er)$ systems.

Fig. 2. The photographs of the sample microstructure in the SrS-Dy₂S₃-Ag_{2-x}S system. The phases presented in the system are as follows: 1 — the eutectics between the AgDyS₂ and $SrDy_2S_4$ phases; 2 — $SrDy_2S_4$; 3 — $Ag_{2x}S$; 4 — an unidentified phase; 5 — AgDyS₂

Fig. 3. The search for complex sulfides in the SrS-Dy₂S3-Ag_{2-x}S system. The samples under investigation are marked with points.

Tyumen State University Herald. 2013. No. 5

REFERENCES

1. Solovieva, A.V. *Zakonomernostifazovyh ravnovesij vsistemahA"S— FeS, A"S— FeS — Ln2S3, A"S— Cu2S— Ln2S3 (A"-Mg, Ca, Sr, Ba; Ln ⁼ La — Lu)* (Avtoref. diss, kand.) [Regularities of Phase Equilibria in $A^{11}S$ — FeS, $A^{11}S$ — FeS — Ln2S3, $A^{11}S$ — Cu2S — Ln2S3 (A^{11} = Mg, Ca, Sr, Ba; Ln = La - Lu)] Systems: Synopsis of Diss. ... Cand. Sci. (Chemistry). Tyumen, 2012. 22 p. (in Russian).

2. Sikerina, N.V. *Zakonomernostifazovyh ravnovesij v sistemah SrS-Cu2S-Ln2Sj (Ln = La-Lu), poluchenie i struktura soedinenij SrLnCuS;* (Avtoref. diss, kand.) [Regularities of Phase Equilibria in the SrS-Cu₂S-Ln₂S₃ (Ln = La-Lu) Systems, Preparation and Composition of SrLnCuS₃ Compounds: Synopsis of Diss. ... Cand. Sci. (Chemistry)]. Tyumen, 2005. 26 p. (in Russian).

3. Wakeshima, M., Furuuchi, F., Hinatsu, Y. Crystal Structures and Magnetic Properties of Novel Rare-Earth Copper Sulfides, EuRCuS3 (R = Y, Gd-Lu) . *J. ofPhysics: Condens. Matter.* 2004. Vol. 16. P. 5503-5518.

4. Ruseikina, A.V., Soloviev, L.A., Andreev, O.V. Crystal Structure of the Compound EuLaCuS3. *Zhurnal neorganicheskoj himii—Journal ofInorganic Chemistry.* 2012. Vol. 57. No. 4. P. 638-642. (in Russian).

5. Ruseikina, A.V., Soloviev, L.A, Molokeev, M.S., Andreev, O.V. Crystal Structure of the EuLnCuS³ (Ln = Nd, Sm) Compounds. *Zhurnal neorganicheskoj himii — Journal of Inorganic Chemistry.* 2012. Vol. 57. No. 1. P. 86-90. (in Russian).

6. Gylay, L.D., Olekseyuk, I.D., Wolcyrz, M., Stepien-Damm, J. Crystal Structures of $RCuPbS₃(R = Tb, Dy, Ho, Er, Tm, Yb and Lu) Compounds. *J. Allous Comp.* 2005. Vol. 399.$ P. 189-195.

7. Christuk, A.E. Wu Ping, Ibers James, A. New Quaternary Chalcogenides BaLnMQ₃ $(Ln = Rare Earth; M = Cu, Ag; Q = S, Se)$. Structures and Grinding-Induced Phase Transition in BaLaCuQ³. *J. ofSolid State Chem.* 1994. Vol. 110. P. 330-336.

8. Andreev, O.V., Ruseikina, A.V., Soloviev, L.A. Phase Diagram Sections of the Cu2S-EuS-Nd2S3 System. *Zhurnal neorganicheskoj himii—JournalofInorganic Chemistry.* 2011. Vol. 56. No. 5. P. 843-848. (in Russian).

9. Leven, I.P. Phase Formation in the BaS-Ag₂S-Gd2S₃ System. *M-ly mezhdunar. konf. molodyh uchenyh po fundamental'nym naukam «Lomonosov-2006»* (Proceedings of the International Conference ofYoung Scientists on Fundamental Sciences «Lomonosov-2006»), Chemistry, 12-15 April, 2006. Vol. 2. 120 p. (in Russian).

10. Andreev, O.V. *Himijaprostyh i slozhnyh sul'fidov vsistemah s uchastiem s-(Mg, Ca, Sr, Ba), d-(Fe, Cu, Ag, Y),f— (La-Lu)jelementov* (Avtoref. diss, dokt.) [Chemistry ofSimple and Complex Sulfides in the Systems with s-(Mg, Ca, Sr, Ba), d-(Fe, Cu, Ag, Y), f—(La-Lu) Elements: Synopsis ofDiss. ... Dr. Sci. (Chemistry)]. Tyumen, 1999. 48 p. (in Russian).

11. Dzhurinskiy, B.F., Bandurkin, G.A. Periodicity ofLanthanides Properties and Inorganic Materials. *Neorganicheskie materialy — Inorganic Materials.* 1979. Vol. 15. No. 6. P. 1024- 1027. (in Russian).

12. Andreev, O.V., Ruseikina, A.V. Synthesis of EuLnCuS₃ (Ln = La-Nd) Compounds, Temperature and Heat ofTheir Fusion. *Vestnik Tjumenskogo gosudarstvennogo universiteta — Tyumen State University Herald.* 2010. No. 3. P. 221-227 (in Russian).

13. Visser, J.W. A Fully Automatic Program for Finding the Unit Cell from Powder Data. *J. Appl. Cryst.* 1969. Vol. 2. P. 89-95.

14. Soloviev, L.A. Full-Profile Refinement by Derivative Difference Minimization. *J. of Applied Crystallography,* 2004. Vol. 37. P. 743-749.

56 *Anna V. Ruseikina, Evgeny O. Galenko, LeonidA. Soloviev...*

15. Andreev, O.V., Sikerina, N.V., Razumkova, I.A. High-Tech Materials of Technology in Inorganic Chemistry *Vestnik Tjumenskogo gosudarstvennogo universiteta — Tyumen State University Herald.* 2005. No. 3. P. 121-131. (in Russian).

16. Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallography.* 1976. A. 32. P. 751-767.

17. Husain, M., Batra, A., Srivastava, K.S. Electonegative, Radii Elements//*Polyhedron.* 1989. Vol. 8. No.9. P. 1233-1234.