MATHEMATICS

©A. N. DEGTEV

a.degtev@list.ru

UDC 519.5

A NEW SOLUTION TO POSTS PROBLEM

ABSTRACT. In the paper there has been constructed a Semirecursive recursively enumerable set B, whose Turing degree is between 0 and 1, taking into account that $A \leq_m B \Leftrightarrow A \leq_0 B$ *for recursively enumerable sets A*.

KEY WORDS. Posts problem, Q-reducibility.

In article [1] E. Post formulated a problem: is there a recursively enumerable set (RES) whose Turing *(T-) degree* will be between 0 and 1. Here 0 — T-degree of recursive sets and $1 - T$ -degree of T-full sets, for example, *m*-universal $K=\{(x,y): x \in W_y\}$, where $\langle x,y \rangle$ is Cantor pair number $(x,y), x,y \in \mathbb{N} = \{0,1,2,...\}$, and y — Post number RES W_0 . This problem was independently solved by A. Muchnik [2] and R. Friedberg [3]. They constituted two T -comparable RES using Turing machines with oracles. It is clear that any of them solves Post's problem.

It is well known [4, p. 203] that an equivalence exists for RES *A* and *B.*

$$
A \leq_T B \iff \overline{A} \leq_e \overline{B} \text{ where } X = N \setminus X
$$

Let \overline{B} be a *semirecursive* set. This means the existence of a general recursive function (GRF) f such that [5]

$$
(\forall x)(D_x \subseteq \overline{B} \Longleftrightarrow f(x) \in \overline{B})
$$

and then e-reducibility \overline{A} to \overline{B} degenerates into s-reducibility, i.e. $(\exists W - RES)(x \in \overline{A} \Leftrightarrow (\exists y)((x, y) \in W \wedge f(y) \in \overline{B}))$ equivalent to $(\exists g - GRF)(x \in \overline{A} \Longleftrightarrow W_{g(x)} \cap \overline{B} \neq \emptyset)$ or $x \in A \iff W_{g(x)} \subseteq B \iff A \leq_{Q} B$. Below there will be defined a GRF *h* such that the set $B = \{x: (\exists y)(y > x \land h(y) \leq h(x))\}$

will be semirecursive [5], $K \nleq_{Q} B$ and direct recalculation $b_n = \max\{x : h(x) = n\}, n \geq 0$, of set \overline{B} will not be dominated by any GRF. Therefore, \overline{B} is a nonrecursive set.

Let *B'* denote the set

$$
\{x \colon x \le t \land (\exists y)(x < y \le t \land h(y) \le h(x))\}
$$

and W_n^t denote the finite number of elements calculated in W_n to step *t*. Let φ_n be a one-place partial recursive function (PRF) with Kleene number *n.* It is necessary to meet the following requirements:

 T_{2} : $K \nleq Q B$ by means of PRF φ_n ;

 T_{2n+1} : *B* is not dominated by PRF φ_n ,

To meet the requirement T_{2n} we will need the labels $[n]$, $n \geq 0$. Denote by (n, t) the number with which the label [я] is paired before the step *t.* We remark that the requirement T_{2n} in the step *t* attracts attention, if for any number $x \leq (n, t)$ the value of $\varphi_n(n,t)$ by step *t* is calculated and the following requirements are met:

(a) $\in K^t \Rightarrow W^t_{\varphi_n(x)} \subseteq B^t$;

$$
(a) \in K^t \Rightarrow W^t_{\varphi_n(x)} \subseteq B^t;
$$

(b)
$$
x \notin K^t \Rightarrow W^t_{\varphi_n(x)} \cap \overline{B^t} \neq \emptyset
$$

where K^i is the finite number of elements of the set K , enumerated in K by the step t .

The requirement T_{2n+1} in the step *t* attracts attention, if for any number $x \leq (n, t + 1)$ the value $\varphi_n(x)$ by step *t* is calculated and $\varphi_n(x)$ is larger than *x*-element of the direct recalculation *Bt.*

We now turn to the determining GRF *h*. It will be such that $h(t+1) \leq h(t)+1$.

STEP 0. Combining the label [0] with the number 0, we put $h(0) = 0$ and move on to the next step.

STEP t ($t \ge 1$). We look for the requirement T with the smallest number s, which in step t attracts attention. If this number s does not exist, the label $[m]$ with the smallest number *m,* which is not yet paired with any number, should be paired with number *t,* we put $h(t) = m$ and move on to the next step.

Otherwise we consider the case that occurs.

A case *m = 2n* for the adequate number *n.*

The label [n] pair with the number *t*, remove labels [k] for $k > m$, put $h(t) = n$ and move on to the step $t + 1$.

The case $m = 2n + 1$ for the adequate number *n*.

Remove labels $[k]$ for $k \geq n+1$, pair the label $[n+1]$ with the number *t*, put $h(t) = n + 1$ move on to the step $t + 1$.

Let us prove that each requirement T_m is satisfied. For that we will show that for all $m \geq 1$ lable [*m*] *stabilizes*, i.e. in an appropriate step it will be paired with some number t_0 and will be paired with it in all the following steps. Then $K \nleq_{\mathcal{O}} B$ by $\varphi_{\mathbf{m}}$. Otherwise let n be the smallest number of the label for which it is not so. Consequently, being paired with the number t_0 in an appropriate step, it is not later removed, but is successively paired with these numbers in steps $t_0 < t_1 < t_2 < ...$ while $n = h(t_0) = h(t_1) = \dots$. Therefore the set B turns out to be finite and $K \leq_{\mathbb{Q}} B$ by GRF φ_n . It contradicts Q -reducibility of a nonrecursive set to a recursive one.

102 *А. N. Degtev*

It will be remembered that $b_n = \max\{x : h(x) = n\}$ is *n*-element of the direct recalculation *B*. If in the step *t* there was the case $m = 2n + 1$, then $h(t) = n + 1$. There cannot be infinitely many steps *t*, as for a big *t* it will turn out that φ_n $(n + 1) < t$ and further on the requirement T_{2n+1} will not attract attention.

The author of the paper is convinced that using Q -reducibility and hypersimple sets *B,* for which there is a representative GRF *h* and which are found in any recursively enumerable T -degree [5], will allow to reprove (or obtain) some other results about such *T*-degrees. A question to experts: will this proof be more comprehensible?

REFERENCES

1. Post, E.L. Recursively enumerable sets ofpositive integers and their decision problem. *Bull. Amer. Math. Soc.* 1944. Vol. 50. № 5. Pp. 284-318.

2. Muchnik, A.A. Unsolvability of the problem of reducibility for the theory of algorithms. *DANSSSR — DANUSSR.* 1956, Vol. 108, Pp. 194-197. (in Russian).

3. Friedberg, R.M. Two recursively enumerable sets of incomparable degrees of insolvability. *Proc. Natl. Acad. Sei.* USA. 1957. Vol.43, Pp. 236-238.

4. Rodzhers, H. *Teorija rekursivnyh funkcij i Jeffektivnaja Vychislimost'* [Theory of recursive functions and effective computability], M.: Mir, 1972. (in Russian).

5. Jockusch, C.J. Semirecursive sets and positive reducibility. *Trans. Amer. Math. Soc.* 1968. Vol. 131. № 2. Pp. 420–436.