MATHEMATICS

© A. N. DEGTEV

a.degtev@list.ru

UDC 519.5

A NEW SOLUTION TO POST'S PROBLEM

ABSTRACT. In the paper there has been constructed a semirecursive recursively enumerable set B, whose Turing degree is between 0 and 1, taking into account that $A \leq_m B \Leftrightarrow A \leq_0 B$ for recursively enumerable sets A.

KEY WORDS. Post's problem, Q-reducibility.

In article [1] E. Post formulated a problem: is there a recursively enumerable set (RES) whose Turing (*T*-) degree will be between 0 and 1. Here 0 — *T*-degree of recursive sets and 1 — *T*-degree of *T*-full sets, for example, *m*-universal $K=\{\langle x,y\rangle: x \in W_y\}$, where $\langle x,y\rangle$ is Cantor pair number $(x,y), x,y \in \mathbb{N} = \{0,1,2,...\}$, and *y* — Post number RES W_y . This problem was independently solved by A. Muchnik [2] and R. Friedberg [3]. They constituted two *T*-comparable RES using Turing machines with oracles. It is clear that any of them solves Post's problem.

It is well known [4, p. 203] that an equivalence exists for RES A and B.

$$A \leq_{\tau} B \iff A \leq_{\sigma} B$$
 where $X = N \setminus X$

Let \overline{B} be a *semirecursive* set. This means the existence of a general recursive function (GRF) f such that [5]

$$(\forall x) \left(D_x \subseteq \overline{B} \Leftrightarrow f(x) \in \overline{B} \right)$$

and then *e*-reducibility \overline{A} to \overline{B} degenerates into *s*-reducibility, i.e. $(\exists W - \operatorname{RES})(x \in \overline{A} \Leftrightarrow (\exists y)(\langle x, y \rangle \in W \land f(y) \in \overline{B}))$ equivalent to $(\exists g - \operatorname{GRF})(x \in \overline{A} \Leftrightarrow W_{g(x)} \cap \overline{B} \neq \emptyset)$ or $x \in A \iff W_{g(x)} \subseteq B \iff A \leq_Q B$. Below there will be defined a GRF *h* such that the set $B = \{x: (\exists y)(y > x \land h(y) \leq h(x))\}$ will be semirecursive [5], $K \not\leq_Q B$ and direct recalculation $b_n = \max\{x: h(x) = n\}, n \ge 0$, of set \overline{B} will not be dominated by any GRF. Therefore, B is a nonrecursive set.

Let B^t denote the set

$$\{x: x \le t \land (\exists y)(x < y \le t \land h(y) \le h(x))\}$$

and W_n^t denote the finite number of elements calculated in W_n to step t. Let φ_n be a one-place partial recursive function (PRF) with Kleene number n. It is necessary to meet the following requirements:

 T_{2n} : $K \leq_Q B$ by means of PRF φ_n ;

 T_{2n+1} : B is not dominated by PRF φ_n ,

To meet the requirement T_{2n} we will need the labels $[n], n \ge 0$. Denote by (n,t) the number with which the label [n] is paired before the step t. We remark that the requirement T_{2n} in the step t attracts attention, if for any number $x \le (n, t)$ the value of $\varphi_n(n,t)$ by step t is calculated and the following requirements are met:

(a)
$$\in K^t \Rightarrow W^t_{\varphi_n(x)} \subseteq B^t$$
;

(b)
$$x \notin K^t \Rightarrow W_{on}^t(x) \cap \overline{B^t} \neq \emptyset$$

where K^{t} is the finite number of elements of the set K, enumerated in K by the step t.

The requirement T_{2n+1} in the step *t* attracts attention, if for any number $x \le (n, t + 1)$ the value $\varphi_n(x)$ by step *t* is calculated and $\varphi_n(x)$ is larger than *x*-element of the direct recalculation $\overline{B^t}$.

We now turn to the determining GRF h. It will be such that $h(t+1) \le h(t) + 1$.

STEP 0. Combining the label [0] with the number 0, we put h(0) = 0 and move on to the next step.

STEP t ($t \ge 1$). We look for the requirement T_s with the smallest number s, which in step t attracts attention. If this number s does not exist, the label [m] with the smallest number m, which is not yet paired with any number, should be paired with number t, we put h(t) = m and move on to the next step.

Otherwise we consider the case that occurs.

A case m = 2n for the adequate number n.

The label [n] pair with the number t, remove labels [k] for k > m, put h(t) = n and move on to the step t + 1.

The case m = 2n + 1 for the adequate number *n*.

Remove labels [k] for $k \ge n + 1$, pair the label [n + 1] with the number t, put h(t) = n + 1 move on to the step t + 1.

Let us prove that each requirement T_m is satisfied. For that we will show that for all $m \ge 1$ lable [m] stabilizes, i.e. in an appropriate step it will be paired with some number t_0 and will be paired with it in all the following steps. Then $K \not\equiv_Q B$ by φ_m . Otherwise let *n* be the smallest number of the label for which it is not so. Consequently, being paired with the number t_0 in an appropriate step, it is not later removed, but is successively paired with these numbers in steps $t_0 < t_1 < t_2 < ...$ while $n = h(t_0) = h(t_1) = ...$. Therefore the set *B* turns out to be finite and $K \leq_Q B$ by GRF φ_n . It contradicts *Q*-reducibility of a nonrecursive set to a recursive one.

102 A. N. Degtev

It will be remembered that $b_n = \max\{x: h(x) = n\}$ is *n*-element of the direct recalculation \overline{B} . If in the step *t* there was the case m = 2n + 1, then h(t) = n + 1. There cannot be infinitely many steps *t*, as for a big *t* it will turn out that φ_n (n + 1) < t and further on the requirement T_{2n+1} will not attract attention.

The author of the paper is convinced that using Q-reducibility and hypersimple sets B, for which there is a representative GRF h and which are found in any recursively enumerable T-degree [5], will allow to reprove (or obtain) some other results about such T-degrees. A question to experts: will this proof be more comprehensible?

REFERENCES

1. Post, E.L. Recursively enumerable sets of positive integers and their decision problem. Bull. Amer. Math. Soc. 1944. Vol. 50. № 5. Pp. 284–318.

2. Muchnik, A.A. Unsolvability of the problem of reducibility for the theory of algorithms. *DAN SSSR* — *DAN USSR*. 1956, Vol.108, Pp. 194–197. (in Russian).

3. Friedberg, R.M. Two recursively enumerable sets of incomparable degrees of insolvability. *Proc. Natl. Acad. Sci.* USA. 1957. Vol.43, Pp. 236–238.

4. Rodzhers, H. *Teorija rekursivnyh funkcij i jeffektivnaja vychislimost'* [Theory of recursive functions and effective computability], M.: Mir, 1972. (in Russian).

5. Jockusch, C.J. Semirecursive sets and positive reducibility. *Trans. Amer. Math. Soc.* 1968. Vol. 131. № 2. Pp. 420–436.