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ALTERNATING ORDER ALGORITHM BASED 
ON STAGES OF CESCHINO’S METHOD

ABSTRACT. This paper investigates the methods for numerical solution ofstiffproblems 
with large dimension. Using the estimation of the largest eigenvalue of the Jacobi matrix it 
has been constructed an inequality in order to control the stability of a Cescino numerical 
scheme with second-order accuracy. To integrate a variable step it is proposed a formula 
Whichallowspredictingthenextstepin time. On the basis of this formula, it has been developed 
a method with first-order accuracy with extended stability range. This method allows stabilize 
behavior of step integration at the stage of solution exactly where stability plays a crucial 
role. This makes it possible to remove restrictions on the possibility of using explicit methods 
for solving stiff problems. It has been formulated an algorithm for the numerical solution of 
Stiffproblems of variable order, which uses the irregular step in time with an additional control 
of stability of the numerical integration scheme. This paper demonstrates solutions of stiff 
problems associated with numerical simulations of ethane pyrolysis, which confirm an increase 
in efficiency due to the use of variable order.
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Introduction. For numerical solution of large dimensional stiff problems it is 
necessary to use algorithms based on explicit methods [1-3]. The methods of 
integration based on implicit or semi-explicit numerical schemes usually use the 
Jacobi matrix inversion [2]. In this case it is a separate time-consuming problem. In 
such a situation it is preferable to use algorithms based on explicit formulas, if the 
stiffness of the problem allows to get the approximation to the solution within a 
reasonable time [3].

The control algorithm of the integration step is usually based on the control 
accuracy of the numerical scheme. This is natural, because the main criterion is the 
accuracy of finding a solution. However, with the usage of integration algorithms 
based on explicit formulas to solve stiff problems, this approach leads to a loss of 
efficiency and reliability [4—5]. This is due to the fact that on the setting area the 
contradiction between accuracy and resistance leads to a large number of repeated 
calculations solutions, and the step is selected significantly lower than the permissible 
maximum. This can be prevented by additional stability control of the numerical 
scheme. At present there are two approaches to the control of stability [5-7]. The first 
one is connected with the assessment of the maximum eigenvalue of the Jacobi matrix 
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through its norm with the subsequent control (along with accuracy) of inequality 
Λ∣]ζ∣∣ ≤ D [6], where D is a positive constant related to the size of the stability domain. 
It is clear that for explicit methods where the Jacobi matrix is not involved in the 
computation process, this additionally results in its finding and consequently to the 
increase of computational expenditures. The second approach is based on the 
estimation of the largest eigenvalue of the Jacobi matrix λmaχ with the power method 
through the right side increments of the system of differential equations with the 
Subsequentcontrol of the inequality λ∣∣λ ∣∣ <D [7]. In all these Casesthis assessment 
does not increase the calculation consumptions [3-5, 7]. Here, using the proposed in 
[7] the estimation method of the largest eigenvalue of the Jacobi matrix we establish 
an inequality in order to control the stability of a Cescino numerical scheme with 
second-order accuracy [8]. Numerical results confirm the efficiency of the integrating 
algorithm due to the stability control.

Cescino method. Cauchy problem is under consideration

y' =fB,y), y(t0) = у0,t0≤t≤tk, (1)
where у and/—Mdimensional material vector functions, t—independent variable 
that varies on a given interval ∣∕0, ∕]. To solve the task (1) we use explicit formulas 
of Runge-Kutta

λ÷1=л+Rm A+pm2K+pJc3+pJ⅛
k=hflt y),k=hfit+h∕4,y+k.∕4), (2)
k= hfii+ h∕2,y + k2∕2), k=hf(t + h,y + kλ - 2ki + 2⅛1),

where h—the integration step, kι., 1 ≤ i ≤ 4 — stages of the method, pmf 1 ≤ i ≤ 4 — 
numerical coefficients, m—order of the method accuracy. When the coefficients are

Λι= 1M22= 2M23= 2M24= 0> (3)

the scheme (2), (3) has the second-order accuracy [8].

Control of calculation accuracy. Scheme (2) with coefficients

P41 = 176M42 = 0 ’P43 = ΊΛ’ΡνΓ 1/6

has the fourth order. Then for accuracy control of the second order scheme error 
estimate can be used δn 2 of type

δ,,2= (P4ΓΛiA + (P42M22A + (P43M23A + (P44M24A-

As a result for the control of the calculation accuracy we use the inequality ∣∣δ 12∣∣ < ε, 
where ∣∣-∣∣—some norm in Rn, ε—the required calculation accuracy.

Taking into consideration we have the relation δπ 2 = O(M), step M' for accuracy 
is chosen according to the formula hac=qh, where q index is calculated by the equation 
<∕∣∣δn2∣∣ = ε. If q < 1 the solution (return) re-evaluation is done with step h, equal to 
qh. Otherwise, the approximate solution is computed and the predicted step Λn+1 is 
calculated according to the formula ⅛n+1 = qh.
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Inequality ∣∣δn 2∣∣ < ε has proved itself for solving many practical problems, and it 
will be used below. The following variable step algorithm based on schemes (2), (3) 
with the inequality for accuracy control ∣∣δn2∣∣ ≤ ε is CESCH42.

Control of numerical scheme stability. Let us construct the inequality to control 
the stability of the scheme (2). To do this we apply (2) to solve the linear equation 
y' = Ay with a constant matrix A. The first three stages A1, k2 и A3 in relation to this 
problem have the form

A1 = Wyn, A2= (W+X2∕4)yn, A3= (W+W2∕2 + X3∕8)yn

where X = hA. It is easy to see that we have the relations

A1-2A2+ A3 = W3yπ∕8, O.5(A-A1) =W2y∕8.

Now we can calculate the estimation of the largest eigenvalue of the Jacobi matrix 
of the system (1) with the help of the power method [3]. We introduce the notation

fy = 2∙max1^{∣(A,-2A2+ A3)i∣∕∣(∣(A2-A1)i∣)∣}. (4)

Then to control the stability of the Cescino method we can use the inequality 
vn ≤ D, where number D limits the stability interval.

The stability of methods OfRunge-Kutta type is usually studied on the scalar test 
equation у' = λy, where λ is an arbitrary complex number, Re(λ) < O.

The meaning of λ—some eigenvalue of the Jacobi matrix task (1).
Applying (2), (3) to solve у' = λy we find out that the stability function Q2(x) of 

second order accuracy method is the following

Q2(x) = (1+ X + X 2/2 + X 3/4), x = hλ

and the stability function Q4(x) of the fourth-order method is as follows

Q4(x) = (1+X+X2∕2+X3∕6 +W∕24), x = hλ.

The stability interval of the second-order method is two, and the fourth-order 
scheme is approximately 2.8. Therefore we set D = 2 in the inequality v < D. 
Considering that vn= 0(h), a step for hs, to the stability can be chosen by the formula 
hs,= rh, where r is computed from the equation rvn= 2.

Rating (4) is rough, because it is not necessarily that the largest eigenvalue is 
strongly separated from the other eigenvalues. In a power method little iteration is 
used and nonlinearity problem (1) introduces additional distortions. Therefore, the 
stability control is used as a constraint on the size of the integration step. As a result, 
the predicted step is calculated by the formula

⅛n+1 = max {hn, min[Λac, As*] } (5)

where hn is the last successful integration step. We note that the formula (5) is used 
to forecast the magnitude of the integration step Λn+l after a successful computing 
solutions with the previous step hn, and so in fact it does not increase the computational 
expenditures. If the step on the stability is less than the last successful it will not be 
reduced because the reason for this may be the roughness of the largest eigenvalue 
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estimation. However, the step will not be increased because the possibility of the 
numerical scheme instability is not excluded. If the step on the stability should be 
reduced, then the next step will be the last successful step hn. As a result, we use the 
formula (5) to choose a step.

This formula allows us to stabilize the behavior of the step on the establishment 
decision section where stability plays a decisive role. The presence of this section 
severely limits the use of explicit methods for solving stiff problems.

Later the variable step algorithm with additional control stability of the numerical 
scheme we will call CESCH42st. This algorithm is based on a numerical formula of 
low (second) order accuracy, and therefore it is aimed at solving non-rigid problems 
with low precision calculations (about 1 % or less), as well as problems of moderate 
stringency. From the results of calculations algorithm CESCH42st follows that the 
actual accuracy of the calculations in the setting area is much higher than the given 
one. This is natural, because in this sector the old errors are suppressed due to the 
stability control, and new errors are small due to the smallness of the solution 
derivatives. In such a situation it is more effective to carry out calculations on the 
low-order method with a wider stability.

First-order method. Based on stages of the numerical scheme (2) we construct 
a method of the first-order accuracy of type

Λ+ι,1 =Λ+ΛA +PnK + PnK +PuK (6)

with a wider area of stability. For this we use (6) to solve the test equation у' = λy.
We get у = Ql(x)yn where x = hλ, stability function Qflx) has the form 

β1(x) = l+(p11+p12+p13+p14)x+(p12∕4+p13∕2+p14)x2+(p13∕8+p14∕2)x3+pl4x4∕4. (7)

The requirement for a first-order accuracy numerical formula (7) implies the 
implementation of correlation pi} + p12+P13 +P14= L The remaining coefficients p1. 
are used to extend the stability area. Stability condition of the scheme (6) has the form 
∣g1(x)∣ < 1. To construct a method with a maximum stability interval we consider the 
Chebyshev polynomial of the form Tflz) = 8z4- 8z2+ 1. It is known that the polynomial 
Tflz) has the least deviation from zero atz∈[-l,l]. We make the change of variables 
z=l- 2x∕γ, while the segment [γ,0] is displayed on the interval [-1,1]. As a result, 
polynomial Tflx) can be written as

Tflx) = 1 - 32x∕γ + 160x2∕γ2- 256x3∕γ3 + 128x4∕γ4. (8)

It is easy to show [3] that the inequality ∣T4(x)∣ ≤ 1 for T4(x) is executed at the 
maximum interval [γ,0], γ = 32. Comparing the correlations (7) and (8) with γ = 32, 
we get the coefficients p 1 ≤ I < 4, of the first order accuracy method (2) with a 
maximum interval of stability, that is

p11 = 895∕2048,p12= 257/512,p13= 31/512,p14= 1/2048. (9)

The stability area of the first-order method (6), (9) along the real axis is 16 times 
wider than the stability area of the numerical scheme (2), (3). Computational 
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expenditures the first-order method and the second-order are the same. Therefore, for 
tasks in which the step is limited mainly by the stability, the offered theoretical 
efficiency is of 16 times.

Accuracy and stability control of the method (6) and (9). In the inequality for 
accuracy control we will apply the local error estimation.

δn,ι= 0,4.-b11)* 1 + (p42-p12)⅛2+(p43-b1Λ+(p44-λΛ∙

Then to control the accuracy of the numerical formula (6) and (9) we can apply 
the inequality ∣δnl∣ < ε. Further, since the stability interval of the numerical scheme 
(6), (9) is limited by the number 32, then for its stability control we can use the 
inequality vn < 32, where vι is found by the formula (4).

Algorithm of variable order. First-order methods with extended stability ranges 
are effective in the establishing areas where the step is limited by stability.

At high precision of calculations at transition points method (2), (3) will be more 
effective. The increase in efficiency can be achieved by the use of each method on 
the area where it is most effective. As a criterion for switching from one method to 
another the inequality can be used to control the stability. In the calculations by the 
method (2), (3) the transition to the numerical scheme (6), (9) is carried out in violation 
of inequality vn≤2. In the calculations by the first-order method the reverse transition 
occurs in the case when vιι<2. Calculations by the first order method are accompanied 
by additional (along with accuracy) control of inequality vn ≤ 32, and the step is chosen 
according to the formula of the type (5).

Differential equations of chemical kinetics. The kinetic scheme of the chemical 
reaction consists of elementary stages of the form

ttl,Λ+ - +aNR,l⅛→βl,Λ + - + βNR,1⅛ (1°)

ctl,Nsx∣+ ·'■ + ^,NR, NS^^NR-^β∣, NS^^1 + PnR,NS3fNR

where x., 1 ≤ z < NR—reagents; NR и NS—correspondingly the number of reagents 
and the number of stages in the reaction; a and βp, 1 ≤ i ≤ NR, 1 <√ ≤ NS — 
stoichiometric coefficients. For each elementary reaction the rate constants of stages 
are given k, 1 <j < NS. A system of ordinary differential equations C' = AτVc with 
given initial condition C(O) = C0 corresponds to the process (10) within the lumped 
model of constant volume isothermal reactor. Here Aτ—stoichiometric matrix, C и 
V—respectively, the vector of reactant concentrations and rates of stages. In the case 
of the reaction in the non-isothermal conditions the system heat balance equation 
T' = {QτV- α(T - Γ01)}∕{C∕C} is added where T—temperature of the mixture in the 
reactor, T01—temperature of the reactor walls, Qτ—vector of unit heats stages, 
C/—heat capacities reactant vector, α = as∕r, ά—heat transfer coefficient, s and 
r—surface area and reactor volume. The upper index T of the vectors Qτ and Cvτ 
stands for transposition. The heat capacities of reagents and heat transfer coefficient 
can be functions of the reagent concentrations c., l<z<NR, and α may also depend on 
the temperature.
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If the reaction occurs in an isothermal reactor of constant volume with substance 
exchanges (open system, ideal mixing reactor), the system of differential equations 
can be written as C' = AτV + (C - C)J®, where C—vector reagents concentration at 
the reactor inlet, Θ—residence time of the mixture in the reactor, Θ = r∕u, и—volumetric 
flow rate of the mixture through the reactor. When the reaction takes place in non­
isothermal conditions, the system is supplemented by the heat balance equation T' = 
{QτV-a(T- T01)}∕(CJC) - (T- T02)∕Θ where T02—the temperature of the mixture 
at the reactor inlet. The temperature of the reaction mixture may be given as a function 
of time t and reagents concentration c, l<I<Nr, that is T= T(t,Q.

Algorithm of formation of chemical kinetics equations [9]. If the stage is 
reversible, the speed stage Ws is the difference in velocity of direct W+j and inverse 
W^s processes, that is Ws = W+s- W^, 1 ≤ ,s, ≤ NS. If the third particle is involved in 
the stage, the speed Vs is calculated by the formulas

V = P W, P = ∑ s,nr+n⅛ c, 1 ≤ s ≤ NS
5 S S, S I=I Sl r

where ε , 1 ≤ s ≤ NS—effectiveness of third particles, NI—the number of inert 
substances, εj. и c, NR + 1 ≤ I ≤ NR + NI—efficiency and concentration of inert 
substances. The values of the vector Wp components are determined from the chemical 
reaction scheme (10) according to relations

W+ = A∏. ,nr+nicai3, W = A ∏ ,NR÷NIcβ⅛5 S^- I=I ’ S S I=I

where ks and к s, l ≤ s ≤ NS—the rate constants of direct and inverse stages, 
respectively. Rate constants of stages are calculated by the formulas

kj~AjT⅛xp(-EJ[RT])

where T—temperature of the mixture in the reactor; A., n. и EJR—given constants.
It is important to note that, in general, the rate constants in the case of non­

isothermal reactor are not permanent—they depend on the temperature. However, at 
first historically an isothermal reactor was considered and A, l≤z≤NS are still called 
constants now.

The stoichiometric matrix Λ7with elements a is formed out of the kinetic scheme 
V

(10) according to the following rule. The number coincides with the column number, 
and the number of the reagent with the line number of the matrix Aτ. If x. is the initial 
reagent, then aj= aj, if x.—product, then a,j= βιy. If x. is at the same time the initial 
reactant and the product, then a = α + βjf Usually in an elementary stage a small 
amount of reagents is involved that is the stoichiometric matrix is extremely 
discharged.

Numerical modeling of ethane pyrolysis. The ethane pyrolysis in the absence 
of oxygen is described by a small sequence of stages. Ethane pyrolysis mechanism 
was discussed in the literature. There accepted reaction scheme offered and studied 
in [10]

C2H6→CH3+ CH3, CH3+ C2H6→C2H4+ C2H5,

c2H5→c2H4+ H, H + C2H →h2+ C2H5, C2H5+ c2H5→ C4H10.
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Here the rate constants of stages have the form: A1 = 1.34∙10^5, A2= 3.73∙102, 
A3= 3.69∙103, A4= 3.66∙10s и A5= 1.62 1 07. Letus denote the reagents concentrations 
as follows: c, = [C2H6], c2= [CH3], c = [CH4], c4= [C2H5], c= [C2H4], c= [H], c7= [H2], 
and c8= [C4H10]. Then the corresponding system consists of eight ordinary differential 
equations of the type C' = AτV, that is

c1'=-A,c1-A2C1C2-A4c1c6,
c2 ^^ 2 A1c1 - A2c1c2, c3 - A2c1c2, (11)
C4'= k2cic2~ kfA+ kJ∖c<,-2 a5c24>c5 - ^3c4> 

C6 - k3c4~ k4cM~ k4cf6> c8 - V24∙

The initial concentration of ethane c1 = [C2H6] is equal to 0.14, for the remaining 
reagents of concentrations it is equal to zero.

The calculations were carried out with the accuracy ε = 10^2. The effectiveness 
of integration algorithms was evaluated by the number of the right side calculations 
if the task (11) on the integration interval. Numerical solution was carried out in the 
interval [0, 0.26] with the initial step h = 10^5. This problem satisfies the “classical” 
definition of stiffness. At the beginning of the integration interval the transition area 
is observed (hundredths of a second) and then there is a slow setting. The comparison 
of the effectiveness of these algorithms was carried out with a known Merson method 
(MERSON) [11]. For all methods the actual accuracy is not worse than defined 
accuracy. Algorithm CESCH42 without the stability control for finding solutions 
required 22.853 calculations of the right side, for the algorithm with stability control 
CESCH42st if = 20,403, for the algorithm of variable order and step CESCH42vp 
the expenses are if = 2588, and for the Merson method if = 25,796.

Conclusion. From the calculation results we can conclude the following. First of 
all, it has been constructed the integration algorithm of the second order with the 
control accuracy and stability of the numerical scheme and the algorithm of variable 
order and step can be used to solve stiff problems. Secondly, if we take into account 
the computational expenditures the variable order and step algorithm CESCH42vp is 
nearly 10 times more efficient than the Merson method. This is a consequence of the 
stability control of the numerical scheme and calculations with a variable order. It 
appears that with the sufficiently large dimension of the problem (1) method 
CESCH42vp can compete with the implicit methods for problems of moderate 
stiffness, because it does not address the Jacobi matrix. When solving twelve test 
problems [2] and the ten examples [12] the advantage of the algorithm CESCH42vp 
is higher.
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