© V. A. BARINOV, K. YU. BASINSKY

vbarinov@utmn.ru, kbasinsky@mail.ru

UDC 532.59: 532.529.5

NONLINEAR SIMULATION OF SURFACE WAVES IN A TWO-PHASE MIXTURE

ABSTRACT. The paper discusses a nonlinear boundary value problem of wave propagation on the free surface of a two-phase (disperse) mixture. To solve the problem, a method of timevariant frequency is applied, which was devised for the solution of nonlinear wave problems with dissipation. A solution has been found to a third order approximation using a smallamplitude parameter. Nonlinear wave frequency and near-surface Stokes flow rate have been defined. They are time functions depending on the wave length and elevation (as in the classical case) and on the dispersed phase concentration. Nonlinear paths of carrier and dispersed phase particles have been found. Basing on the obtained expression for the dispersed particles paths, the nonlinear effect has been described: in wave motion dispersed particles that are heavier than carrier phase particles float, while lighter particles sink.

KEY WORDS. Nonlinear surface waves, two-phase medium.

An infinitely deep layer of two-phase mixture, bounded from above by free surface $z^* = \xi^*$ (t^*, x^*) is considered. It is assumed: the carrier phase is ideal incompressible liquid, viscosity of which only occurs at the interface; the disperse phase is spherical particles of a radius; a wave with λ ($\lambda >> \xi^*$ max, $\lambda >>$ a) length propagates in the x^* ; $k/\xi^*_{max} = \varepsilon$ direction—small wave parameter, $k = 2\pi/\lambda$ —wave number. Physical (dimensional) values, where necessary, are marked with asterisks. Setting wave frequency (phase velocity) an unknown time function, we can write the nonlinear boundary value problem [4] in a dimensionless form

$$-\frac{\alpha_{o}}{(t/c)'}\frac{\partial\gamma}{\partial t} + (1-\alpha_{o})\nabla\cdot\mathbf{v}_{1} - \varepsilon\alpha_{o}\nabla\cdot(\gamma\mathbf{v}_{1}) = 0, \quad \frac{1}{(t/c)'}\frac{\partial\gamma}{\partial t} + \nabla\cdot\mathbf{v}_{2} + \varepsilon\nabla\cdot(\gamma\mathbf{v}_{2}) = 0, \quad (1)$$

$$\left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)\frac{1}{(t/c)'}\frac{\partial\mathbf{v}_{1}}{\partial t} - \frac{s\mu_{1}\alpha_{o}}{2(t/c)'}\frac{\partial\mathbf{v}_{2}}{\partial t} - r\alpha_{o}(\mathbf{v}_{2} - \mathbf{v}_{1}) + \nabla p + \varepsilon\left[\mu_{1}\left(1 + \frac{s}{2}\alpha_{0}\right)(\mathbf{v}_{1}\nabla)\mathbf{v}_{1} - \frac{s\mu_{1}\alpha_{o}\gamma}{2(t/c)'}\frac{\partial\mathbf{v}_{2}}{\partial t} - r\alpha_{o}(\mathbf{v}_{2} - \mathbf{v}_{1})\right] + \varepsilon^{2}\frac{s}{2}\mu_{1}\alpha_{o}\gamma\left[(\mathbf{v}_{1}\nabla)\mathbf{v}_{1} - \frac{s\mu_{1}\alpha_{o}\gamma}{2(t/c)'}\frac{\partial\mathbf{v}_{2}}{\partial t} - \frac{\partial\mathbf{v}_{1}}{\partial t}\right]\right] + \varepsilon^{2}\frac{s}{2}\mu_{1}\alpha_{o}\gamma\left[(\mathbf{v}_{1}\nabla)\mathbf{v}_{1} - (\mathbf{v}_{2}\nabla)\mathbf{v}_{2}\right] = 0,$$

$$\begin{split} \left[\mu_{2} + \frac{s}{2} \mu_{1} \left(1 - \alpha_{o}\right) \right] \frac{1}{\left(t/c\right)'} \frac{\partial v_{2}}{\partial t} - \frac{s \mu_{1} \left(1 - \alpha_{o}\right)}{2 \left(t/c\right)'} \frac{\partial v_{1}}{\partial t} + r \left(1 - \alpha_{o}\right) \left(v_{2} - v_{1}\right) + \nabla p + \varepsilon \left\{ \left[\mu_{2} + \frac{s}{2} \mu_{1} \left(1 - \alpha_{0}\right) \right] \left(v_{2} \nabla \right) v_{2} - \frac{s}{2} \mu_{1} \left(1 - \alpha_{0}\right) \left(v_{1} \nabla \right) v_{1} - r \alpha_{0} \gamma \left(v_{2} - v_{1}\right) - \frac{s \mu_{1} \alpha_{o} \gamma}{2 \left(t/c\right)'} \left(\frac{\partial v_{2}}{\partial t} - \frac{\partial v_{1}}{\partial t} \right) \right\} + \\ + \varepsilon^{2} \frac{s}{2} \mu_{1} \alpha_{o} \gamma \left[\left(v_{1} \nabla \right) v_{1} - \left(v_{2} \nabla \right) v_{2} \right] = 0, \quad v_{1} = \left(v_{1x}, v_{1z}\right), \quad v_{2} = \left(v_{2x}, v_{2z}\right), \\ \frac{1}{\left(t/c\right)'} \frac{\partial \xi}{\partial t} - \left(1 - \alpha_{o}\right) v_{1z} - \alpha_{o} v_{2z} + \varepsilon \left\{ \frac{\partial \xi}{\partial x} \left[\left(1 - \alpha_{o}\right) v_{1x} + \alpha_{o} v_{2x} \right] - \alpha_{o} \gamma \left(v_{2z} - v_{1z}\right) \right\} + \\ + \varepsilon^{2} \alpha_{o} \gamma \frac{\partial \xi}{\partial x} \left(v_{2x} - v_{1x}\right) = 0, \quad z = \varepsilon \xi \left(t, x\right), \\ p - v_{o}^{2} \xi + \varepsilon \alpha_{o} \left(\mu_{1} - \mu_{2}\right) v_{o}^{2} \gamma \xi = 0, \quad v_{o}^{2} = g/k c_{o}^{2}, \quad z = \varepsilon \xi \left(t, x\right), \\ v_{iz} \to 0, \quad v_{ix} \to 0, \quad z \to -\infty, \quad i = 1, 2. \end{split}$$

Dimensionless quantities are associated with physical equations

$$\begin{split} t^* &= kc^*t^*, x = kx^*, z = kz^*, \mu_i = \rho_i^0 / \rho^0, r = R / \rho^0 kc_0, \rho^0 = (1 - \alpha_0) \rho_1^0 + \alpha_0 \rho_2^0, \\ c &= c^*(t) / c_0 = \omega^*(t) / \omega_0, \alpha^* = \varepsilon \alpha_0 \gamma, k\zeta^* = \varepsilon \zeta, \mathbf{v}_i^* = \varepsilon c_0 \mathbf{v}_i, p^* = P_i - P_a + \rho_i^0 gz^* = \varepsilon \rho^0 c_0^2 p. \end{split}$$

Here ω_0 , c_0 is frequency, phase velocity of a linear wave; α_0 , α^* is disperse phase concentration, its disturbance; $\mathbf{v}_i^{*,P}$, ρ^0 is velocity vector, pressure, true density of the i-th phase; ρ^0 , P_a is quiescent mixture density, atmospheric pressure; $R = 9\eta/a^2$ is interphase friction coefficient (η —dynamic viscosity), coefficient s = 1; 0 depending on account of the added mass force.

Maclaurin expansion of the boundary conditions are reduced to the surface z = 0. Unknown functions are defined as ε series:

$$\mathbf{v}_i = \sum_{n=1}^{\infty} \varepsilon^{n-1} \mathbf{v}_{in}, \quad p = \sum_{n=1}^{\infty} \varepsilon^{n-1} p_n, \quad \xi = \sum_{n=1}^{\infty} \varepsilon^{n-1} \xi_n, \quad \gamma = \sum_{n=1}^{\infty} \varepsilon^{n-1} \gamma_n, \quad c = 1 + \sum_{n=1}^{\infty} \varepsilon^n a_n(t).$$

(2) Substituting (2) series in the equations and boundary conditions (laid out in z = 0 neighborhood) (1) and equating coefficients of ε^0 , ε^1 , ε^2 , we obtain an asymptotic representation of (1) problem in the first three approximations. In the first approximation, the problem takes the form of: when ε^0

$$-\alpha_{o}\frac{\partial\gamma_{1}}{\partial t} + (1-\alpha_{o})\nabla\cdot\mathbf{v}_{11} = 0, \quad \frac{\partial\gamma_{1}}{\partial t} + \nabla\cdot\mathbf{v}_{21} = 0,$$

$$\begin{pmatrix}\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\frac{\partial\mathbf{v}_{11}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{o}\frac{\partial\mathbf{v}_{21}}{\partial t} - r\alpha_{o}\left(\mathbf{v}_{21} - \mathbf{v}_{11}\right) + \nabla p_{1} = 0,$$

$$\begin{pmatrix}\mu_{2} + \frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\frac{\partial\mathbf{v}_{21}}{\partial t} - \frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\frac{\partial\mathbf{v}_{11}}{\partial t} + r\left(1-\alpha_{o}\right)\left(\mathbf{v}_{21} - \mathbf{v}_{11}\right) + \nabla p_{1} = 0,$$

$$\begin{aligned} \mathbf{v}_{11} &= (\mathbf{v}_{1x1}, \mathbf{v}_{1z1}), \quad \mathbf{v}_{21} &= (\mathbf{v}_{2x1}, \mathbf{v}_{2z1}), \\ \frac{\partial \xi_1}{\partial t} &= (1 - \alpha_o) \mathbf{v}_{1z1} + \alpha_o \mathbf{v}_{2z1}, \quad z = 0, \\ p_1 - v_o^2 \xi_1 &= 0, \quad z = 0; \end{aligned}$$

for the second approximation: at ε'

$$\begin{aligned} -\alpha_{o}\frac{\partial\gamma_{2}}{\partial t} + (1-\alpha_{o})\nabla\cdot v_{12} &= \alpha_{0}\nabla\cdot(\gamma_{1}v_{11}), \quad \frac{\partial\gamma_{2}}{\partial t} + \nabla\cdot v_{22} &= -\nabla\cdot(\gamma_{1}v_{21}), \quad (4) \\ \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)\frac{\partial v_{12}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{o}\frac{\partial v_{22}}{\partial t} - r\alpha_{o}(v_{22} - v_{12}) + \nabla p_{2} &= r\alpha_{o}\gamma_{1}(v_{21} - v_{11}) - \\ -\left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)(v_{11}\nabla)v_{11} + \frac{s}{2}\mu_{1}\alpha_{o}(v_{21}\nabla)v_{21} + \frac{s}{2}\mu_{1}\alpha_{o}\gamma_{1}\left(\frac{\partial v_{21}}{\partial t} - \frac{\partial v_{11}}{\partial t}\right), \\ \left(\mu_{2} + \frac{s}{2}\mu_{1}(1-\alpha_{o})\right)\frac{\partial v_{22}}{\partial t} - \frac{s}{2}\mu_{1}(1-\alpha_{o})\frac{\partial v_{12}}{\partial t} + \nabla p_{2} + r(1-\alpha_{o})(v_{22} - v_{12}) = \\ &= -\left(\mu_{2} + \frac{s}{2}\mu_{1}(1-\alpha_{o})\right)(v_{21}\nabla)v_{21} + \frac{s}{2}\mu_{1}(1-\alpha_{o})(v_{11}\nabla)v_{11} + r\alpha_{o}\gamma_{1}(v_{21} - v_{11}) + \\ &+ \frac{s}{2}\mu_{1}\alpha_{o}\gamma_{1}\left(\frac{\partial v_{21}}{\partial t} - \frac{\partial v_{11}}{\partial t}\right), \quad v_{12} = (v_{1x2},v_{12}), \quad v_{22} = (v_{2x2},v_{22}), \\ \frac{\partial\xi_{2}}{\partial t} - (1-\alpha_{o})v_{122} - \alpha_{o}v_{222} = \alpha_{o}\gamma_{1}(v_{21} - v_{12}) - \frac{\partial\xi_{1}}{\partial x}\left[(1-\alpha_{o})v_{1x1} + \alpha_{o}v_{2x1}\right] + \\ &+ (1-\alpha_{o})\xi_{1}\frac{\partial v_{1z1}}{\partial z} + \alpha_{o}\xi_{1}\frac{\partial v_{221}}{\partial z}, \quad z = 0, \\ p_{2} - v_{o}^{2}\xi_{2} = \alpha_{o}\left(\mu_{2} - \mu_{1}\right)v_{o}^{2}\gamma_{1}\xi_{1} - \xi_{1}\frac{\partial p_{1}}{\partial z}, \quad z = 0; \\ \text{for the third approximation: at } \varepsilon^{2} \\ &- \alpha_{o}\frac{\partial\gamma_{3}}{\partial t} + (1-\alpha_{o})\nabla\cdot v_{13} = \alpha_{0}\nabla\cdot(\gamma_{1}v_{12} + \gamma_{2}v_{11}) + \alpha_{0}\frac{\partial\gamma_{1}}{\partial t}(ta_{2})', \quad (5) \\ \frac{\partial\gamma_{3}}{\partial t} + \nabla\cdot v_{23} = -\nabla\cdot(\gamma_{1}v_{22} + \gamma_{2}v_{21}) - \frac{\partial\gamma_{1}}{\partial t}(ta_{2})', \\ \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)\frac{\partial v_{13}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{o}\frac{\partial v_{23}}{\partial t} - r\alpha_{o}\left(v_{23} - v_{13}\right) + \nabla p_{3} = r\alpha_{o}\gamma_{1}\left(v_{22} - v_{12}\right) - \\ - \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)\left[\left(v_{11}\nabla\right)v_{12} + \left(v_{12}\nabla\right)v_{11}\right] + \frac{s}{2}\mu_{1}\alpha_{o}\left[\left(v_{21}\nabla\right)v_{22} + \left(v_{22}\nabla\right)v_{21}\right] + \\ \end{array}\right]$$

Tyumen State University Herald. 2013. No. 7

$$\begin{aligned} +r\alpha_{o}\gamma_{2}\left(\mathbf{v}_{21}-\mathbf{v}_{11}\right)+\frac{s}{2}\mu_{1}\alpha_{o}\gamma_{1}\left(\frac{\partial v_{22}}{\partial t}-\frac{\partial v_{12}}{\partial t}\right)+\frac{s}{2}\mu_{1}\alpha_{o}\gamma_{2}\left(\frac{\partial v_{21}}{\partial t}-\frac{\partial v_{11}}{\partial t}\right)+\\ +\mu_{1}\left[\frac{s}{2}\alpha_{o}\frac{\partial v_{21}}{\partial t}-\left(1+\frac{s}{2}\alpha_{o}\right)\frac{\partial v_{11}}{\partial t}\right](ta_{2})'-\frac{s}{2}\mu_{1}\alpha_{o}\gamma_{1}\left[\left(v_{11}\nabla\right)v_{11}-\left(v_{21}\nabla\right)v_{21}\right],\\ \left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\right)\frac{\partial v_{23}}{\partial t}-\frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\frac{\partial v_{13}}{\partial t}+\nabla p_{3}+r\left(1-\alpha_{o}\right)\left(v_{23}-v_{13}\right)=\\ =-\left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\right)\left[\left(v_{21}\nabla\right)v_{22}+\left(v_{22}\nabla\right)v_{21}\right]+\frac{s}{2}\mu_{1}\alpha_{o}\gamma_{1}\left(\frac{\partial v_{22}}{\partial t}-\frac{\partial v_{12}}{\partial t}\right)+\\ +\frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\left[\left(v_{11}\nabla\right)v_{12}+\left(v_{12}\nabla\right)v_{11}\right]+r\alpha_{o}\gamma_{1}\left(v_{22}-v_{12}\right)+r\alpha_{o}\gamma_{2}\left(v_{21}-v_{11}\right)+\\ +\frac{s}{2}\mu_{1}\alpha_{o}\gamma_{2}\left(\frac{\partial v_{21}}{\partial t}-\frac{\partial v_{11}}{\partial t}\right)+\left[\left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\right)\frac{\partial v_{21}}{\partial t}+\frac{s}{2}\mu_{1}\left(1-\alpha_{o}\right)\frac{\partial v_{11}}{\partial t}\right](ta_{2})'-\\ -\frac{s}{2}\mu_{1}\alpha_{o}\gamma_{1}\left[\left(v_{11}\nabla\right)v_{11}-\left(v_{21}\nabla\right)v_{21}\right],\quad v_{13}=\left(v_{1x3},v_{1z3}\right),\quad v_{23}=\left(v_{2x3},v_{2z3}\right),\\ \frac{\partial \xi_{3}}{\partial t}-\left(1-\alpha_{o}\right)v_{1z3}-\alpha_{o}v_{2z3}=\alpha_{o}\gamma_{1}\left(v_{2z2}-v_{1z2}\right)+\alpha_{o}\gamma_{2}\left(v_{2z1}-v_{1z1}\right)-\frac{\partial \xi_{1}}{\partial t}\left(ta_{2}\right)'-\\ -\frac{\partial \xi_{1}}{\partial x}\left[\left(1-\alpha_{o}\right)v_{1x2}+\alpha_{o}v_{2x2}\right]-\frac{\partial \xi_{2}}{\partial x}\left[\left(1-\alpha_{o}\right)v_{1x1}+\alpha_{o}v_{2x1}\right]+\left(1-\alpha_{o}\right)\xi_{1}\frac{\partial v_{1z2}}{\partial z}+\\ +\alpha_{o}\xi_{1}\frac{\partial v_{2z2}}{\partial z}+\left(1-\alpha_{o}\right)\xi_{2}\frac{\partial v_{1z1}}{\partial z}+\alpha_{o}\frac{\partial v_{2z1}}{\partial z}\right]+\alpha_{0}\gamma_{1}\xi_{1}\left(\frac{\partial v_{2z1}}{\partial z}-\frac{\partial v_{1z1}}{\partial z}\right)+\alpha_{0}\frac{\partial \gamma_{1}}{\partial z}\xi_{1}\left(v_{2z1}-v_{1z1}\right)-\\ -\frac{\partial \xi_{1}}{\partial x}\left[\left(1-\alpha_{o}\right)\frac{\partial v_{1x1}}{\partial z}+\alpha_{o}\frac{\partial v_{2x1}}{\partial z}\right]+\alpha_{0}\gamma_{1}\xi_{1}\left(\frac{\partial v_{2z1}}{\partial z}-\frac{\partial v_{1z1}}{\partial z}\right)+\alpha_{0}\frac{\partial \gamma_{1}}{\partial z}\xi_{1}\left(v_{2z1}-v_{1z1}\right)-\\ -\alpha_{0}\gamma_{1}\frac{\partial \xi_{1}}{\partial x}\left(v_{2x1}-v_{1x1}\right),\quad z=0,\\ p_{3}-v_{o}^{2}\xi_{3}=\alpha_{o}\left(\mu_{2}-\mu_{1}\right)v_{o}^{2}\left(\gamma_{1}\xi_{2}+\gamma_{2}\xi_{1}+\xi_{1}^{2}\frac{\partial \gamma_{1}}{\partial z}\right)-\xi_{1}\frac{\partial p_{2}}{\partial z}-\xi_{2}\frac{\partial p_{1}}{\partial z}-\frac{1}{2}\xi_{1}^{2}\frac{\partial^{2} p_{1}}{\partial z^{2}},\quad z=0.\\ \text{Linear problem (3) solution has [4] the form: \end{aligned}$$

$$\begin{aligned} \mathbf{v}_{ix1} &= Ae^{z-bt} \left(M_i \cos \chi + N_i \sin \chi \right), \quad \mathbf{v}_{iz1} = Ae^{z-bt} \left(M_i \sin \chi - N_i \cos \chi \right), \quad i = 1, 2, \\ \gamma_1 &= 0, \quad p_1 = Ae^{z-bt} \cos \chi, \quad \xi_1 = Av_o^{-2}e^{-bt} \cos \chi, \quad \chi = x - t + \theta, \\ \text{where } M_1 &= \frac{1}{b^2 + 1} \Big[1 + 2 \big(b^2 + 1 \big) \mu_1 \mu_2 \big(1 - \mu_1 \big) \big(s + 2\mu_2 \big) \big/ d \Big], \\ M_2 &= \frac{1}{b^2 + 1} \Big[1 + 2 \big(b^2 + 1 \big) \mu_1^2 \big(1 - \mu_2 \big) \big(s + 2\mu_2 \big) \big/ d \Big], \end{aligned}$$

$$N_{1} = \frac{1}{b^{2} + 1} \Big[-b + 2(b^{2} + 1)\mu_{2}(1 - \mu_{1})(2r - b\mu_{1}(s + 2\mu_{2}))/d \Big],$$

$$N_{2} = \frac{1}{b^{2} + 1} \Big[-b + 2(b^{2} + 1)\mu_{1}(1 - \mu_{2})(2r - b\mu_{1}(s + 2\mu_{2}))/d \Big],$$

$$d = (2r - b\mu_{1}(s + 2\mu_{2}))^{2} + \mu_{1}^{2}(s + 2\mu_{2})^{2}.$$

Here b is dimensionless damping decrement, $\beta = bkc_0$ is dimensional decrement. For damping decrement and phase velocity in [4] the expressions were obtained $c_o^2 = c_g^2 + c_d^2 + c_r^2$

$$\beta = k \left\{ \left[-\frac{\delta}{2} + \sqrt{\frac{\delta^2}{4} + \frac{\psi^3}{27}} \right]^{\frac{1}{3}} + \left[-\frac{\delta}{2} - \sqrt{\frac{\delta^2}{4} + \frac{\psi^3}{27}} \right]^{\frac{1}{3}} + \frac{2R/\rho^{\circ}k}{3\mu_1(s+2\mu_2)} \right\},$$

where

$$c_{g}^{2} = \frac{g}{k}, \quad c_{d}^{2} = \frac{2\alpha_{o}(1-\alpha_{o})(\rho_{1}^{o}-\rho_{2}^{o})^{2}}{\rho_{1}^{o}(s\rho^{o}+2\rho_{2}^{o})} \frac{g}{k}, \quad c_{r}^{2} = \frac{\beta}{k^{2}} \left(3\beta - \frac{4R\rho^{o}}{\rho_{1}^{o}(s\rho^{o}+2\rho_{2}^{o})} \right),$$
$$\psi = \frac{3\mu_{1}(s+2\mu_{2})(s\mu_{1}+2\mu)g/k - 4(R/\rho^{o}k)^{2}}{12\mu_{1}^{2}(s+2\mu_{2})^{2}},$$
$$\delta = \frac{R/\rho^{o}k}{54\mu_{1}^{3}(s+2\mu_{2})^{3}} \left[4(R/\rho^{o}k)^{2} + 9\mu_{1}(s+2\mu_{2})(s\mu_{1}-\mu+3\mu_{1}\mu_{2})g/k \right],$$

Solution to problems of the second approximation (4) can be written in the following way

$$v_{ix2} = 0, \quad v_{iz2} = A^2 L_i e^{2z-2bt}, \quad i = 1, 2, \quad p_2 = A^2 e^{-2bt} \left[L_3 \left(e^{2z} - 1 \right) - \frac{1}{2v_0^2} \right],$$
$$\gamma_2 = A^2 L_4 e^{2z-2bt}, \quad \xi_2 = \frac{A^2}{2v_0^4} e^{-2bt} \cos 2\chi,$$

where

$$L_{1} = -\frac{\alpha_{o}}{(1-\alpha_{o})}L_{2}, \quad L_{2} = \frac{(1-\alpha_{o})H}{2(r-b(s\mu_{1}+2\mu))}, \quad L_{4} = \frac{(1-\alpha_{o})H}{2b(r-b(s\mu_{1}+2\mu))},$$

$$L_{3} = \frac{-(1-\alpha_{o})(\mu_{1}r-b\mu_{1}(s+2\mu_{2}))(M_{1}^{2}+N_{1}^{2})-\alpha_{o}(\mu_{2}r-b\mu_{1}(s+2\mu_{2}))(M_{2}^{2}+N_{2}^{2})}{2(r-b(s\mu_{1}+2\mu))},$$

$$H = \mu_{1}(s+2)(M_{1}^{2}+N_{1}^{2})-(s\mu_{1}+2\mu_{2})(M_{2}^{2}+N_{2}^{2}).$$

Substituting expressions of the first and second approximations in the equations and boundary conditions of the problem (5), we obtain the problem for the third approximation in an explicit form

$$\begin{aligned} -\alpha_{o}\frac{\partial\gamma_{3}}{\partial t} + (1-\alpha_{o})\nabla \cdot v_{13} &= 2\alpha_{0}A^{3}e^{3z-3b}L_{4}\left(M_{1}\sin\chi - N_{1}\cos\chi\right), \quad (6) \\ \frac{\partial\gamma_{3}}{\partial t} + \nabla \cdot v_{23} &= 2A^{3}e^{3z-3b}L_{4}\left(N_{2}\cos\chi - M_{2}\sin\chi\right), \\ \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)\frac{\partial v_{1x3}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{o}\frac{\partial v_{2x3}}{\partial t} - r\alpha_{o}\left(v_{2x3} - v_{1x3}\right) + \frac{\partial p_{3}}{\partial x} &= Ae^{z-bt}/2\left(\left\{\mu_{1}\left[\left(2+s\alpha_{0}\right)\cdot \left(N_{1}+bM_{1}\right)-s\alpha_{0}\left(N_{2}+bM_{2}\right)\right]\left(ta_{2}\right)' + A^{2}e^{2z-2bt}\left[s\mu_{1}\alpha_{0}L_{4}\left(N_{1}-N_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-\mu_{1}\left(2+s\right)L_{1}N_{1}\right]s\cos\chi + \left\{\mu_{1}\left[s\alpha_{0}\left(M_{2}-bN_{2}\right)-\left(2+s\alpha_{0}\right)\left(M_{1}-bN_{1}\right)\right]\right\}\sin\chi\right), \\ \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)\frac{\partial v_{1x3}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{o}\frac{\partial v_{2x3}}{\partial t} - r\alpha_{o}\left(v_{2x3}-v_{1x3}\right) + \frac{\partial p_{3}}{\partial z} = Ae^{z-bt}/2\left(\left\{\mu_{1}\left[\left(2+s\alpha_{0}\right)\cdot \left(M_{1}-bN_{1}\right)\right\right]sin\chi\right), \\ \left(\mu_{1} + \frac{s}{2}\mu_{1}\alpha_{o}\right)\frac{\partial v_{1x3}}{\partial t} - \frac{s}{2}\mu_{1}\alpha_{o}\frac{\partial v_{2x3}}{\partial t} - r\alpha_{o}\left(v_{2x3}-v_{1x3}\right) + \frac{\partial p_{3}}{\partial z} = Ae^{z-bt}/2\left(\left\{\mu_{1}\left[\left(2+s\alpha_{0}\right)\cdot \left(M_{1}-bN_{1}\right)-s\alpha_{0}\left(M_{2}-bN_{2}\right)\right\right]\left(ta_{2}\right)' + A^{2}e^{2z-2bt}\left[s\mu_{1}\alpha_{0}L_{4}\left(M_{1}-M_{2}\right)+2\alpha_{0}rL_{4}\cdot \left(N_{1}-N_{2}\right)+2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)+2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)-2\alpha_{0}rL_{4}\cdot \left(M_{1}-M_{2}\right)\right]sin\chi\right) \\ \left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\left(\frac{\partial v_{2x3}}{\partial t}-\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\left(\frac{\partial v_{2x3}}{\partial t}+\frac{\partial p_{3}}{\partial x}+r\left(1-\alpha_{0}\right)\left(u_{23}-u_{13}\right)\right)\right)\right) \\ = Ae^{z-bt}/2\left(\left\{2\mu_{2}\left(N_{2}+bM_{2}\right)-s\mu_{1}\left(1-\alpha_{0}\right)\left(N_{1}+bM_{1}-N_{2}-bM_{2}\right)\right]sin\chi\right) \\ \left(\mu_{2}+\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\left(\frac{\partial v_{2x3}}{\partial t}-\frac{s}{2}\mu_{1}\left(1-\alpha_{0}\right)\left(\frac{\partial v_{2x3}}{\partial t}+\frac{\partial p_{2$$

$$= A^{3}e^{z-bt}/2\Big(\Big\{2\mu_{2}(M_{2}-bN_{2})-s\mu_{1}(1-\alpha_{0})(M_{1}-bN_{1}-M_{2}+bN_{2})\Big](ta_{2})'+\\ +A^{2}e^{2z-2bt}\Big[s\mu_{1}\alpha_{0}L_{4}(M_{1}-M_{2})+(6\mu_{2}+3s\mu_{1}-2s\alpha_{0}\mu_{1})L_{2}N_{2}+2\alpha_{0}rL_{4}(N_{1}-N_{2})-\\ -2s\mu_{1}(1-\alpha_{0})L_{1}N_{1}\Big]\Big\}\cos\chi+\Big\{2\mu_{2}(N_{2}+bM_{2})-s\mu_{1}(1-\alpha_{0})(N_{1}+bM_{2}-\\ -N_{2}-bN_{2})\Big](ta_{2})'+A^{2}e^{2z-2bt}\Big[2s\mu_{1}(1-\alpha_{0})L_{1}M_{1}-2\alpha_{0}rL_{4}(M_{1}-M_{2})+s\mu_{1}\alpha_{0}L_{4}\cdot\\ \cdot(N_{1}-N_{2})-(6\mu_{2}+3s\mu_{1}-2s\alpha_{0}\mu_{1})L_{2}M_{2}\Big]\Big\}\sin\chi\Big)\\\frac{\partial\xi_{3}}{\partial t}-(1-\alpha_{o})v_{1z3}-\alpha_{o}v_{2z3}=\frac{A^{3}e^{-3bt}}{8v_{0}^{6}}\Big(9e^{-2bt}\Big[sin3\chi-b\cos3\chi\Big]+\Big\{8bv_{0}^{4}A^{-2}e^{2bt}\cdot\\ \cdot(ta_{2})'+16v_{0}^{4}\Big[\alpha_{0}L_{2}+(1-\alpha_{0})L_{1}-v_{0}^{2}\alpha_{0}L_{4}d^{-1}(\mu_{1}-\mu_{2})(2r-b\mu_{1}(s+2\mu_{2}))\Big]+b\Big\}\\ \cdot\cos\chi+\Big\{-8v_{0}^{4}A^{-2}e^{2bt}(ta_{2})'+16v_{0}^{6}\alpha_{0}\mu_{1}L_{4}d^{-1}(s+2\mu_{2})(\mu_{1}-\mu_{2})\Big\}in\chi\Big), \quad z=0,\\ p_{3}-v_{o}^{2}\xi_{3}=-\frac{A^{3}e^{-3bt}}{8v_{0}^{4}}\Big\{\cos3\chi+\Big[5+16v_{0}^{2}L_{3}+8\alpha_{0}v_{0}^{4}L_{4}(\mu_{1}-\mu_{2})\Big]\cos\chi\Big\}, \quad z=0.$$

To solve the problem (6), we set amplitude ratios functions of time to be determined. Then to an accuracy of the third approximation, solution to the nonlinear problem has the form of

$$c = 1 + \varepsilon^{2} A^{2} \frac{1 - e^{-2bt}}{bt} C_{a},$$

$$(7)$$

$$v_{1x} = Ae^{x - bt} (M_{1} \cos \chi + N_{1} \sin \chi) + \varepsilon^{2} A^{3} e^{x - bt} \left\{ e^{2x - 2bt} Q_{1} \sin \chi + \left[D_{v_{3}} \left(e^{-2bt} - 1 \right) + e^{2x - 2bt} R_{1} \right] \right\} \cos \chi,$$

$$v_{2x} = Ae^{x - bt} (M_{2} \cos \chi + N_{2} \sin \chi) + \varepsilon^{2} A^{3} e^{x - bt} \left[\left(e^{2x - 2bt} Q_{2} - C_{w4} - D_{w4} e^{-2bt} \right) \sin \chi + \left(C_{v4} + D_{v4} e^{-2bt} + e^{2x - 2bt} R_{2} \right) \cos \chi \right],$$

$$v_{1x} = Ae^{x - bt} (M_{1} \sin \chi - N_{1} \cos \chi) + \varepsilon A^{2} L_{1} e^{2x - 2bt} + \varepsilon^{2} A^{3} e^{x - bt} \left[\left(D_{v_{3}} \left(e^{-2bt} - 1 \right) + e^{2x - 2bt} Q_{3} \right) \sin \chi + \left(e^{2x - 2bt} R_{3} \cos \chi \right) \right],$$

$$v_{1x} = Ae^{x - bt} (M_{1} \sin \chi - N_{1} \cos \chi) + \varepsilon A^{2} L_{1} e^{2x - 2bt} + \varepsilon^{2} A^{3} e^{x - bt} \left[\left(D_{v_{3}} \left(e^{-2bt} - 1 \right) + e^{2x - 2bt} Q_{3} \right) \sin \chi + \left(e^{2x - 2bt} R_{3} \cos \chi \right) \right],$$

$$v_{2x} = Ae^{x - bt} (M_{2} \sin \chi - N_{2} \cos \chi) + \varepsilon A^{2} L_{2} e^{2x - 2bt} + \varepsilon^{2} A^{3} e^{x - bt} \left[\left(C_{v4} + D_{v4} e^{-2bt} + e^{2x - 2bt} Q_{4} \right) \sin \chi + \left(C_{w4} + D_{w4} e^{-2bt} + e^{2x - 2bt} R_{4} \right) \cos \chi \right],$$

$$p = Ae^{x - bt} \cos \chi + \varepsilon A^{2} e^{-2bt} \left[L_{3} \left(e^{2x} - 1 \right) - \frac{1}{2v_{0}^{2}} \right] + \varepsilon^{2} A^{3} e^{x - bt} \left[\left(C_{v5} + D_{v5} e^{-2bt} + e^{2x - 2bt} Q_{5} \right) \sin \chi + \left(C_{w5} + D_{w5} e^{-2bt} + e^{2x - 2bt} R_{5} \right) \cos \chi \right],$$

Nonlinear simulation of surface waves ...

$$\begin{split} \gamma &= \varepsilon A^{2} L_{4} e^{2z-2bt} + \varepsilon^{2} A^{3} e^{3z-3bt} \Big[Q_{6} \sin \chi + R_{6} \cos \chi \Big], \\ \xi &= \frac{A}{v_{o}^{2}} e^{-bt} \cos \chi + \varepsilon \frac{A^{2}}{2v_{o}^{4}} e^{-2bt} \cos 2\chi + \varepsilon^{2} e^{-bt} A^{3} \Big[3e^{-2bt} A^{3} 8^{-1} v_{0}^{-6} \cos 3\chi + \\ &+ \Big(\Big(1+9b^{2} \Big)^{-1} e^{-2bt} \Big\{ 2\alpha_{0} d^{-1} L_{4} \left(\mu_{1} - \mu_{2} \right) \Big[6br + \left(\mu_{1}s + 2\mu_{2} \right) \Big(1-3b^{2} \Big) \Big] - 2v_{0}^{-2} \cdot \\ &\cdot (1+3b^{2}) C_{a} + (1-\alpha_{0}) (Q_{3} - 3bR_{3} + D_{v_{3}}) + \alpha_{0} \left(Q_{4} - 3bR_{4} + D_{v_{4}} - 3bD_{w_{4}} \right) + 8^{-1} v_{0}^{-6} \cdot \\ &\cdot (5-3b^{2}) \Big\} + \Big(1+b^{2} \Big)^{-1} \Big[\Big(1-\alpha_{0} \Big) C_{v_{3}} + \alpha_{0} \left(C_{v_{4}} - bC_{w_{4}} \right) \Big] \Big) \cos \chi + \Big(\Big(1+9b^{2} \Big)^{-1} e^{-2bt} \cdot \\ &\cdot \Big\{ 4\alpha_{0} d^{-1} L_{4} \left(\mu_{1} - \mu_{2} \right) \Big[r - 2b \left(\mu_{1}s + 2\mu_{2} \right) \Big] + 4v_{0}^{-2} bC_{a} - (1-\alpha_{0}) (R_{3} + 3bQ_{3} + \\ &+ 3bD_{v_{3}} \Big) - \alpha_{0} \left(R_{4} + 3bQ_{4} + D_{w_{4}} + 3bD_{v_{4}} \right) + 2v_{0}^{-6} b \Big\} - \Big(1+b^{2} \Big)^{-1} \Big[\Big(1-\alpha_{0} \Big) bC_{v_{3}} + \\ &+ \alpha_{0} \left(C_{w_{4}} + bC_{v_{4}} \right) \Big] \Big) \sin \chi \Big]. \end{split}$$

Here coefficients of the third approximation are omitted because of their awkwardness.

(7) implies that over time, frequency (phase velocity) tends to the value corresponding to the linear problem. Fig.1 shows the dependence of the wave phase velocity c^* on time t^* when $\rho_2^{\ 0} = 1500 \text{ kg/m}^3$ and $\rho_2^{\ 0} = 500 \text{ kg/m}^3$ ($A = 1, \lambda = 5\text{m}, \rho_1^{\ 0} = 1000 \text{ kg/m}^3$, $\eta = 10^{-3} \text{ kg/(m^*c)}$, $a = 0,15 * 10^{-2} \text{ m}$). Phase velocity is greater when particles of disperse phase have greater density than the carrier phase which is not the case with lighter particles. From graphs showing dependence of wave amplitude on time on Fig. 2 it is seen that the wave motion decays faster than phase velocity reaches a linear value.

Dimensionless coordinates of disperse and carrier particles satisfy the equations

$$x_{i} = \chi_{i} + \gamma_{i}t_{i} - \theta, \quad \chi_{it} = \varepsilon \left(\frac{t_{i}\gamma_{i}}{c}\right)' \mathbf{v}_{xi} - \left(t_{i}\gamma_{i}\right)', \quad z_{it} = \varepsilon \left(\frac{t_{i}\gamma_{i}}{c}\right)' \mathbf{v}_{zi},$$
(8)

where $\gamma_i(t) = \omega/\sigma_i$ is vibration frequency of *i*-phase particle.

Solution (8) is found in expanded form in small parameter

$$\chi_{i} = \sum_{j=0}^{\infty} \varepsilon^{j} \chi_{ij}, \quad z = \sum_{j=0}^{\infty} \varepsilon^{j} z_{ij},$$

$$\gamma_{i} = 1 + \sum_{j=0}^{\infty} \varepsilon^{j} \gamma_{ij}.$$
(9)

Substituting expressions (7), series (9) in the motion equation (8), to determine the first three coefficients we obtain the following equations:

$$\begin{aligned} \frac{d\chi_{i0}}{dt_{i}} &= -1, \quad \frac{dz_{i0}}{dt_{i}} = 0, \\ \frac{d\chi_{i1}}{dt_{i}} &= Ae^{z_{i0}-bt_{i}} \left[M_{i} \cos \chi_{0} + N_{i} \sin \chi_{0} \right] - (t_{i}\gamma_{1})', \\ \frac{dz_{i1}}{dt_{i}} &= Ae^{z_{i0}-bt_{i}} \left[M_{i} \sin \chi_{i0} - N_{i} \cos \chi_{i0} \right], \quad \chi_{i0} = x_{i0} + d, \\ \frac{d\chi_{i2}}{dt_{i}} &= Ae^{z_{i0}-bt_{i}} \left\{ \left[N_{i}x_{i1} + M_{i}z_{i1} + M_{i} (t_{i}\gamma_{i1})' - bM_{i}t_{i}\gamma_{i1} \right] \cos \chi_{i0} + \right. \\ \left. + \left[N_{i}z_{i1} - M_{i}x_{i1} + N_{i} (t_{i}\gamma_{i1})' - bN_{i}t_{i}\gamma_{i1} \right] \sin \chi_{i0} - (t_{i}\gamma_{i2})' \right\}, \\ \frac{dz_{i2}}{dt_{i}} &= Ae^{z_{i0}-bt_{i}} \left\{ \left[N_{i}x_{i1} + M_{i}z_{i1} + M_{i} (t_{i}\gamma_{i1})' - bM_{i}t_{i}\gamma_{i1} \right] \sin \chi_{i0} - (t_{i}\gamma_{i2})' \right\}, \\ \left. - \left[N_{i}z_{i1} - M_{i}x_{i1} + N_{i} (t_{i}\gamma_{i1})' - bN_{i}t_{i}\gamma_{i1} \right] \cos \chi_{i0} + Ae^{z_{0}-bt_{i}}L_{i} \right\}, \end{aligned}$$

First, we have $\chi_{i0} = \chi_{iL} - t_i = x_{iL} - t_i + \theta_i z_{i0} = z_{iL}$, where x_{iL}, z_{iL} are Lagrangian coordinates of the particle at a standstill.

Determining the periodic solution for χ_{ij} , z_{ij} , we obtain

$$\begin{aligned} \gamma_{i1} &= 0, \quad \chi_{i1} = \frac{Ae^{z_{iL} - bi_i}}{b^2 + 1} \Big[(N_i - bM_i) \cos \chi_{iL} - (M_i + bN_i) \sin \chi_{iL} \Big], \\ z_{i1} &= \frac{Ae^{z_{iL} - bi_i}}{b^2 + 1} \Big[(M_i + bN_i) \cos \chi_{iL} + (N_i - bM_i) \sin \chi_{iL} \Big], \end{aligned}$$

Equations for determining the trajectory of a fluid particle in the second approximation take the form

$$\frac{dx_{i2}}{dt_i} = \frac{A^2 e^{2z_{i,l}^2 - 2bt_i}}{b^2 + 1} \left(M_i^2 + N_i^2 \right) - \left(t_i \gamma_{i2} \right)', \quad \frac{dz_{i2}}{dt_i} = A^2 e^{2z_{i,l}^2 - 2bt_i} \left(L_i - \frac{bM_i^2 + bN_i^2}{b^2 + 1} \right).$$

Solving these equations, we obtain

$$\begin{aligned} x_{i2} &= 0, \quad z_{i2} = \frac{A^2 e^{2z_{iL}}}{2b} \left(1 - e^{-2bt_i} \right) \left(L_i - \frac{bM_i^2 + bN_i^2}{b^2 + 1} \right), \\ \gamma_{i2} &= \frac{A^2 e^{2z_{iL}}}{2bt_i \left(b^2 + 1 \right)} \left(1 - e^{-2bt_i} \right) \left(M_i^2 + N_i^2 \right). \end{aligned}$$

The value $u_{i} = c - \sigma / k$ is transfer velocity. Its approximation is of the form

$$u_{si} = \varepsilon^2 c_0 \frac{A^2 e^{2z_{iL}}}{2bt_i (b^2 + 1)} (1 - e^{-2bt_i}) (M_i^2 + N_i^2).$$

Transfer velocity depends not only upon the depth the particle is located at, but also on attenuation time. Particle motion consists of two convergent modes—nonperiodical and rotational. Figs. 3, 4 show trajectories of disperse phase particles at $\rho_2^{\ 0} = 500 \text{ kg/m}^3$ and $\rho_2^{\ 0} = 1500 \text{ kg/m}^3$.

Fig. 4. Trajectories of disperse phase particles at $\rho_2^0 = 1500 \text{ kg/m}^3$

The graphs show that the lighter particles deepen while moving, and the heavier, on the contrary, rise closer to the free surface. That leads to an increase (decrease) in concentration of heavier (lighter) particles in the near-surface layer. The present paper analytically discovered this phenomenon of nonlinear character [3]. A more precise solution obtained in this work confirms and specifies this nonlinear effect.

REFERENCES

1. Aleshkov, Ju.Z. Diffusion of Impurities in the Ocean. Vestnik Sankt-Peterburgskogo universiteta — Saint Petersburg University Herald. 2001. Series 1. Issue. 1. Pp. 12-20.

2. Nudner, I.S., Maksimov, V.V., Majorov, Ju.B., Babchik, D.V. Modelling of Pump Dynamics in the Coastal Area. Vychislitel'nye tehnologii — Computational Technologies. 2008. Vol. 13, № S2. Pp. 60-77.

3. Barinov, V.A., Butakova, N.N. A Nonlinear Problem of Surface Waves on a Two-Phase Mixture. Zhurnal vychislitel'noj matematiki i matematicheskoj fiziki — Computational Mathematics and Mathematical Physics. 2003. Vol. 43, №. 12. Pp. 1870-1883.

4. Barinov, V.A., Butakova, N.N. Propagation of Waves on the Free Surface of a Two-Phase Mixture. *Izvestija RAN* — Bulletin of the Russian Academy of Sciences. 2003. \mathbb{N} 6. Pp. 94-102.

5. Barinov, V.A., Butakova, N.N. Waves on the Free Surface of a Two-Phase Medium. *Prikladnaja mehanika i tehnicheskaja fizika* — Journal of Applied Mechanics and Technical *Physics*. 2002. Vol. 43, № 4. Pp. 27-35.

6. Aleshkov, Ju.Z., Barinov, V.A., Butakova, N.N. Nonlinear Surface Waves on a Layer of a Two-Phase Medium. *Vestnik Sankt-Peterburgskogo universiteta — Saint Petersburg University Herald.* 2003. Series 1. Issue 4. Pp. 64-75.

Sretenskij, L.N. *Teorija volnovyh dvizhenij zhidkosti* [Theory of Wave Motion in Fluid].
 M.: Nauka, 1977. 816 p.

8. Aleshkov, Ju.Z. Teorija voln na poverhnosti tjazheloj zhidkosti [Wave Theory for Heavy Liquid Surface]. L.: Leningrad University Publ., 1981. 196 p.

9. Barinov, V.A., Basinskij, K.Ju. Nonlinear Stokes Waves on the Surface of Low-Viscosity Fluid. Vestnik Udmurtskogo universiteta — Udmurt University Herald. 2011. № 2. Pp. 112-122.

10. Barinov, V.A., Basinskij, K.Ju. The Solution of a Nonlinear Problem of Waves on the Surface Weakly-Viscous Fluid. *Vestnik Sankt-Peterburgskogo universiteta* — *Saint Petersburg University Herald*. 2011. Series 10. Issue. 2. Pp. 9-16.