МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ХИМИИ

Кафедра органической и экологической химии

РЕКОМЕНДОВАНО К ЗАШИТЕ В ГЭК И ПРОВЕРЕНО НА ОБЪЕМ ЗАИМСТВОВАНИЯ Заведующий кафедрой

д.х.н.,профессор Т.А. Кремлева

«18» Whoreg 2019 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(магистерская диссертация)

ВЛИЯНИЕ ДОБАВОК ОРГАНИЧЕСКИХ ОСНОВАНИЙ НА ЭПОКСИДИРОВАНИЕ ЦИКЛОГЕКСЕНА В УСЛОВИЯХ МЕЖФАЗНОГО **КАТАЛИЗА**

Направление подготовки 04.04.01 «Химия» Магистерская программа «Химия нефти и экологическая безопасность»

Выполнила работу Самчук Студентка 2 курса Алина очной формы обучения Игоревна

Научный руководитель Метелёва к.х.н., доцент Галина Петровна

Me merel Рецензент Морозова к.х.н., инженер КЛ ЦЗЛ Наталья АО «Антипинский НПЗ» Владимировна

г. Тюмень, 2019

СОДЕРЖАНИЕ

введение	3
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР	5
1.1. Межфазный катализ	5
1.2. Типы межфазного катализа	
1.3. Катализаторы межфазного переноса	6
1.3.1.Комплекс Вентурелло	
1.3.2. Влияние аминов на эффективность эпоксидирование оле	финов18
1.4. Механизм эпоксидирования олефинов	
1.4.1. Прямое каталитическое действие в межфазной системе	
1.4.2. Обратный МФК	
1.5. Синергизм	22
ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	24
2.1. Методы и объекты исследования	24
2.1.1. Подготовка реагентов к синтезу	24
2.1.2. Методика эпоксидирования олефинов в условиях МФК	25
2.2. Получение эпоксициклогексана	26
2.2.1. Исследования скорости целевой реакции	26
2.2.2. Условия проведения хроматографирования результатов р	реакции26
2.2.3. Определение содержания «активного» кислорода	27
2.2.4. Йодометрическое титрование органической фазы	27
ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ	29
3.1. Экстракционный механизм эпоксидирования циклогексен 48	на в условиях МФК
3.2 МФК с участием поверхности раздела фаз	49
выводы	55
СПИСОК ЛИТЕРАТУРЫ	56
ПРИЛОЖЕНИЯ	63

ВВЕДЕНИЕ

Многим крупным открытиям в органической химии предшествовали разнообразные достижения. Межфазный катализ (МФК) и является тем крупным достижением. Несколькими группами ученых в разных странах была определена, серия открытых ранее родственных явлений, но, большая часть, относится к межфазному катализу. На сегодняшний день метод межфазного катализа остается одним из наиболее популярных в самых разных областях химии.

Одним получения ИЗ методов эпоксидных соединений является двухфазной водно-органической системе с эпоксидирование олефинов В использованием водного раствора H_2O_2 , фосфорной кислоты и вольфрамата натрия и гетерогенных катализаторов. Межфазный катализатор представляет собой источник липофильных катионов и перемещает ионы реагента из водной фазы в органическую фазу. Ионные пары имеют в составе полярную и неполярную части, благодаря этому качеству они растворяются в водной и органической фазах. В связи с этим комплексы, содержащие эти вещества, могут распределяться между фазами и поддерживать реакцию.

Эпоксидирование олефинов в одну стадию считается более продуктивным. Для прямого эпоксидирования возможно применение различных окислителей, тем не менее, H_2O_2 представляет собой более экологически чистый реагент, так как стабильными конечными продуктами реакции — вода и молекулярный кислород.

Немаловажный интерес для селективного органического синтеза представляет эпоксидирование олефинов H_2O_2 в двухфазных водно-органических системах катализируемое пероксогетрополисоединениями P(V) и W(VI).

Образование циклических пероксокомплексов обуславливается способностью атома вольфрама взаимодействовать с H_2O_2 , благодаря этому повышается каталитическая активность фосфорновольфрамовых гетерополисоединений.

Целью данной работы является – изучение влияния добавок органических оснований на эффективность эпоксидирования циклогексена в условиях МФК.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. Межфазный катализ

Ускорение реакций между химическими соединениями, находящимися в разных фазах называется межфазным катализом (МФК).

Взаимная нерастворимость реагентов длительное время затрудняла синтез химических веществ. МФК представляет собой общий метод решения данной проблемы.

Суть метода заключается в том, что при наличии межфазного катализатора два вещества, находящиеся в несмешивающихся фазах, взаимодействуют друг с другом. А он в свою очередь, переносит ионы реагента из водной фазы в органическую. Таким образом, появляется способность осуществить реакцию между веществами, изначально находившимися во взаимно несмешивающихся фазах.

Необходимо принять во внимание гидрофильно-липофильный баланс ионных пар, при подборе катализатора [1]. Ионным парам (Q^+Y^-) свойственна растворимость в водной и органической фазах и поверхностная активность, благодаря дифильности. Взаимодействие ионных пар с субстратом возможен в водной фазе по механизму «высаливания» субстрата и на ПРФ и в органической фазе. Данный метод может быть применен в большом количестве реакций: алкилирование и других.

Много преимуществ по сравнению с другими методами, имеют системы с МФК. Они работают без апротонных растворителей, требуют значительно меньше сырья и требований к инструментальному обеспечению Дорогие и нестабильные реагенты можно заменить более доступными и безопасными, проще контролировать побочные реакции [2]. Синтез становится наиболее экологичным. Межфазные системы бывают разные, например: ж/ж, т/ж, ж/т [3, 4].

1.2. Типы межфазного катализа

В случае, если реакция протекает в неполярной фазе, то катализатор Q+ выполняет функцию переноса аниона из водной фазы в органическую (цикл Старкса). Считается, что к данному типу относятся практически все реакции в двухфазных каталитических системах.

$$\mathbf{R}\mathbf{X} + \mathbf{Q}\mathbf{Y} \rightleftharpoons \mathbf{R}\mathbf{Y} + \mathbf{Q}\mathbf{X}$$
 (0 Φ)
 $\mathbf{K}\mathbf{X} + \mathbf{Q}\mathbf{Y} \rightleftharpoons \mathbf{K}\mathbf{Y} + \mathbf{Q}\mathbf{X}$ ($\mathbf{B}\Phi$)

С учётом того, что реакция проходит в ВФ, один из реагентов должен перейти из ОФ и раствориться в водной. Считается, что данному процессу способствует полярная природа переходящего реагента, «всаливание» с участием особых веществ в водной фазе, либо формирование ионной пары с гидрофильным ионом. Известно лишь незначительное количество реакций, протекающих по данному механизму.

Третьим типом реакций могут быть две реакции в вязком подслое, т.е. в водной фазе или органической, и соответсвенно четвертый тип — это реакции протекающие только на ПРФ. К пятому типу относятся реакции проходящие через ПРФ [5].

1.3. Катализаторы межфазного переноса

Существуют процессы, в которых оба вещества, пребывающие в одной фазе, никак не способны образовывать связь друг с другом, без участия основания. В этом случае, катализатор переносит анион, создающийся *in situ*.

Наиболее часто используемые катализаторы – четвертичные ониевые соли и соединения, обладающие катионсольватирующими или катионсвязывающими свойствами (криптанды, поданды, краун-эфиры) [6].

Перенос анионов из водной в органическую фазу может осуществляться благодаря различным четвертичным солям.

Четвертичные соли фосфония используются значительно реже. На сегодняшний день более доступны $C_{16}H_{36}ClP$ и $C_{19}H_{42}BrP$. Токсичные четвертичные соли используют реже, главным образом при исследованиях активности межфазных катализаторов.

Четвертичные соли считаются хорошими межфазными катализаторами, но в некоторых случаях они имеют недостатки, такие как разложение в сильнощелочных средах при температурах. Криптанды и краун-эфиры устойчивы в данных условиях, имея способность к комплексообразованию и к переносу реагентов между фазами. Однако они гораздо дороже (в 100-1000 раз) четвертичных солей, следовательно, в промышленности их нужно регенерировать для повторного использования.

Полиэфиры с открытой цепью, а именно, полиэтеленгликоли, устойчивы и довольно дешевы, но их активность невысока, что существенно ограничивает их использование.

Брунель установил, что стабильность катализаторов на основе пдиалкиламинопиридиниевых солей примерно в 100 раз выше, нежели простых тетраалкиламмониевых солей, и что эти катализаторы стабильны даже при температуре до 180°С. Он описал в собственной работе применение полярных высокомолекулярных соединений и других пиридиниевых соединений в роли стабильных катализаторов в системах с замещением в ароматическом кольце. Исследователь допустил, что сделать соли аммония химически более стойкими можно с помощью резонансной стабилизации. Так, соли 4-диалкиламинопиридина должны быть более устойчивыми, чем обычные соли аммония, поскольку положительный заряд делокализован по нескольким атомам. Помимо, стерических препятствия в солях данного типа должны способствовать их стабильности в присутствии жестких нуклеофильных реагентов [7]. В роли межфазных катализаторов используются фосфотриамиды, Р, Sоксиды, N-оксид, полиамины, обладающие катионсольватирующей способностью.

Каталитическая активность в межфазных реакциях наблюдается у обычных триалкиламины, что связывают, в большинстве случаев, образованием *in situ* ЧАС [6].

Хеннис и сотр. [8] вновь «открыли» катализ аминами реакции $C_6H_5CHCl_2$ с CH_3COOK . Они показали, что катализируется ЧАС, образующийся *in situ*. В ходе реакции добавляли NaI, который реагировал с C_3H_5Cl , с образованием алкилиодида, алкилировавшего третичный амин. Как только в реакционной среде образовывался третичный аммониевый ион, он начинал выполнять роль катализатора (уравнения 1, 2).

$$RCl + NaI \rightarrow R-I + NaCl \tag{1}$$

$$R'_{3}N + R-I \rightarrow RN+R'_{3}I (Q+I-)$$
 (2)

Применение комплексов переходных металлов в качестве катализаторов или реагентов в органических реакциях очень разнообразно и эффективно [9].

Роль металлокомплексного катализа в условиях МФК заключается в совместном использовании комплекса металла и межфазного переносчика для проведения органических реакций в двухфазных системах. Сущность межфазного агента, как правило, заключается в переносе аниона реагента или анионных форм металлокомплекса (введенных или генерируемых в результате реакции) в неполярную среду, где происходит каталитическая или стехиометрическая реакция.

Примером может служить реакция окисления алкенов пероксидом водорода в присутствии солей или оксидов переходных металлов и межфазного катализатора в углеводородных растворителях [9]. Межфазный катализатор выполняет две функции:

1. Переносит нейтральные молекулы перекиси водорода в органическую фазу (вероятно, за счет экстракции в результате образования водородной связи) и

предотвращает разложение пероксида. Природа переходного металла влияет на направление реакции. А в реакции катализируемой оксидом осмия (VIII), C_6H_{12} превращается в $C_6H_{12}O_2$ (выход 50%);

2. При применении оксида молибдена (VI) или H_2WO_4 образуются в сопоставимых количествах оксид циклогексена и диол (суммарный выход 57-66%); V_2O_5 способствует, прежде всего образованию циклогексен-2-она и циклогексен-2-ола (суммарный выход составил 89%).

Метод эпоксидирования олефинов заключается в использовании разбавленного H_2O_2 с двухкомпонентным катализатором, содержащим WO_4^{2-} и PO_4^{3-} в структуре кислота/ вода /липофильный растворитель (pH=1,5-4,6) [8, 9]

Реакция взаимодействия вольфрамовой кислоты с фосфорной кислотой и пероксидом водорода в присутствии липофильной четвертичной аммониевой соли в двухфазной вводно-органической системе с количественным выходом позволяет получить комплекс Вентурелло. Структура аниона данного комплекса представлена на рис 1. Этот комплекс эффективно катализирует эпоксидирование различных неактивированных непредельных органических соединений в системе органический растворитель – 16% водный раствор H_2O_2 .

Рис 1. Структура аниона $[PO_4\{W(O)(O_2)_2\}_4]^{3-}$ в комплексе Вентурелло.

Молибденовая и вольфрамовая кислоты (H_2MO_4 и H_2WO_4) способны легко превращаться в пероксокомплексы в водном растворе при добавлении H_2O_2 . Эти пероксокомплексы могут быть использованы для эпоксидирования алкенов в

системе $C_2H_4Cl_2/водная$ кислота в присутствии нейтральных липофильны лигандов, способных образовать комплексы типа $MO(O_2)_2L$ (M=Mo,W;L= гексаалкилфосфотриамид, 4-R-пиридин-N-оксид и др.), растворимые в органических растворителях [9]. Именно поэтому, нейтральный лиганд играет роль межфазного агента, солюбилизирующего в органической фазе пероксидные комплексы молибдена или вольфрама, генерируемые *in situ*, обеспечивая их контакт с окисляемым соединением. При этом, большое значение имеет выбор оптимального значения рН водной фазы, при которой могут быть получены нейтральные, а не анионные пероксокомплексы.

Тетрафенилпорфирины марганца(III), хрома(III), кобальта(III) и железа(III) катализируют эпоксидирование стирола в двухфазной водно-органической CH₂Cl₂/водн.NaClO, содержащей межфазный системе катализатор (бензилдиметилтетрадециламмонийхлорид) [9]. Наиболее эффективным металлокомплексным катализатором ацетат(мезоявляется тетрафенилпорфиринато) марганца(III), при использовании которого оптимальных условиях может быть получен фенилоксиран с выходом 90%. Менье и коллеги внесли изменения в эту систему и существенно расширить сферу ее применения путем введения пиридина в качестве шестого (аксиального) лиганда порфиринового комплекса. При эпоксидировании стирола добавка пиридина резко увеличивает скорость реакции. Влияние добавки пиридина не результатом окислительного действия N-оксида, который может образоваться в результате реакции и служить донором кислорода. Модифицирующее действие координацией с марганцем, что обосновывается пиридина вызвано его результатами изучения влияния различных замещенных пиридинов. Наряду с этим наличие пиридина оказывает влияние на стереоселективность процессов. Арилзамещенный имидазол также ускоряет действие, подобное пиридину [9].

Группа исследователей применяли для катализа $H_7O_{42}PW_{12}$ и $C_{21}H_{38}ClN$ для эпоксидирования замещенных олефинов 38% H_2O_2 в двухфазной водно-

органической системе, содержащей СНС l_3 . Выход эпоксида — 78%. При окислении vic-диолов в α -гидроксикетоны система была также эффективной [10, 11, 12].

1.3.1. Комплекс Вентурелло

Как известно, пероксокомплексы вольфрама $PW_xO_y^{z-}$, применяются для окисления субстратов: спиртов, олефинов, ароматических углеводородов, которые образуются в системах H_2O_2 – H_3PO_4 – Na_2WO_4 и $H_3PW_{12}O_{40}$ – H_2O_2 .

Методами ИК- и 31 Р ЯМР-спектроскопии было обнаружено, что и в воде, и в органических растворителях при определенных условиях может образовываться достаточно стабильный анион $PW_4O_{24}^{3-}$. Ү. Иши с сотрудниками [13] указали на то, что для эффективного окисления различных органических соединений 35 %-ным раствором H_2O_2 можно использовать в роли катализатора соединение Вентурелло [14, 15]. Также существует мнение исследователей, что эпоксидирование олефинов во всех случаях осуществляется через то самое пероксосоединение (рис. 2) [16, 17, 18].

Отрицательный ион выглядит, как правильная тригональная пирамида PO_4 имеет C_2 -симметрию, связанны кислородными атомами с $W(O_2)_2O_3$. Пероксидные группы связаны с атомами вольфрама [19].

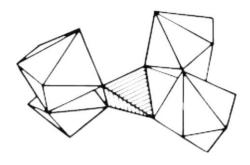


Рис. 2. Структура пероксокомплекса $\{PO_4[WO(O_2)_2]_4\}^{3-}$.

Для осуществления промышленно важных процессов окисления требуется глубокое изучение механизма образования активных каталитических комплексов при использовании многокомпонентных системы на основе

пероксополиоксометаллатов (ППОМ). Поэтому при проведении исследований [20] были приняты во внимание результаты работ С. Venturello, Kazuhiko Sato, Y. Ishii и других ученых.

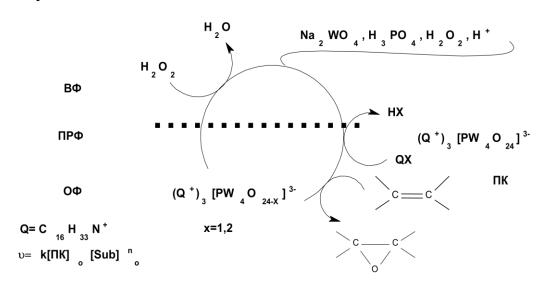


Рис. 3. Получение эпоксициклогексена в межфазной системе.

На рисунке приведены структурные формулы используемых соединений. Их получают реакцией фосфорной кислотны вольфрамата натрия и пероксида водорода. В зависимости от их соотношения формируются разные молекулы (рис. 4). По мнению большинства ученых, работающих в этой области, наибольшей каталитической активностью обладает соединение с формулой $\{PO_4[WO(O_2)_2]_4\}^{3-}$ (рис. 4) [21, 22].

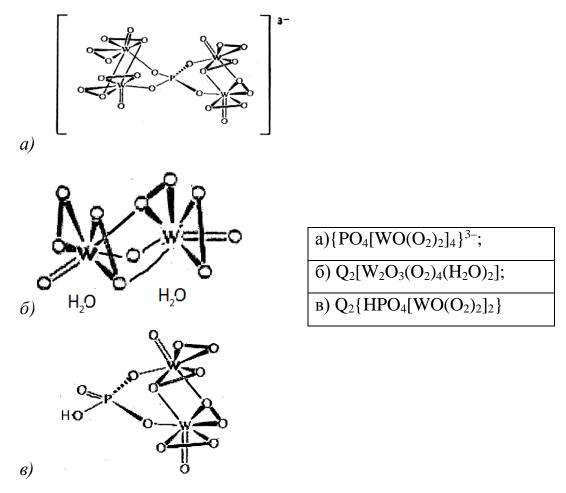


Рис. 4. Пероксидные соединения - катализаторы.

На синтез комплексов, которые содержат именно данный комплекс была направлена отработка методик получения катализатора (табл. 1., рис. 4), используя для синтеза ЧАС фтора хлора [23].

Кол	Каталитический комплекс	Оксометаллат-	Характеристи
Код	каталитический комплекс	предшественник	ка вещества
A	Тетра-н-бутиламмоний тетра(оксодипероксовольфрамо) фосфата $[(n-Bu)_4N]_3\{PO_4[WO(O_2)_2]_4\}$		Кристалличес
		H ₃ PW ₁₂ O ₄₀ *15,4H ₂ O	кое вещество
			белого цвета
			(Тплавления=
			128ч130°С)
Б	N-гексадецилпиридиний		Кристалличес
	тетра(оксодипероксовольфрамо)	H ₃ PW ₁₂ O ₄₀ *15,4H ₂ O	кое вещество
	фосфата		белого цвета
	$[C_5H_5N(n-$		(Тплавления=
	$C_{16}H_{33})]_3\{PO_4[WO(O_2)_2]_4\}$		130ч131°С)
В	Метил-три- <i>н</i> -октиламмоний		
	тетра(оксодипероксовольфрамо)	$H_2WO_4 + H_3PO_4$	Сиропообразн
	фосфата	ИЛИ	ое вещество
	[MeN(n-	$H_3PW_{12}O_{40}*15,4 H_2O$	желтого цвета
	$C_8H_{17})_3]_3\{PO_4[WO(O_2)_2]_4\}$		

Применение хлорированных углеводородов в качестве растворителей и катализаторов межфазного переноса являются одними из главных препятствий к промышленному внедрению каталитических систем Venturello-Ishii, содержащих галогенид-ионы [24]. В данной системе катализатор получается в процессе реакции. Дальнейшее его применение в системе эпоксидирования можно получить наиболее подходящий ион $\{PO_4[WO(O_2)_2]_4\}^{3-}$, а также предотвратить попадания в рабочую смесь галоген-ионов вносящиеся с ПАВ.

$a - \{PO_4[WO(O_2)_2]_4\}^{3-}$
$6 - {HPO_4[WO(O_2)_2]_2}^{2},$
B - $[W_2O_3(O_2)_4(H_2O)_2]^{2-}$

Рис. 5. Пероксокомплексы, при разложении $H_3PW_{12}O_{40}$.

Следует учитывать, что циклоалкены, спиртов или ненасыщенные карбоновые кислоты могут вступать в реакцию окислительной деструкции. В пероксометаллатной схеме ион металла не меняет свою степень оксисления и без пероксида водорода окисление не наблюдается. Если обратить внимание на дискуссию о структуре действующих частиц-окислителей, то в данной схеме H_2O_2 является главным оксислителем (рис. 6). Во время взаимодействия пероксида водорода с катализатором, происходит стехиометрическое окисление, изменяется степень оксисления металла по оксометаллатной схеме.

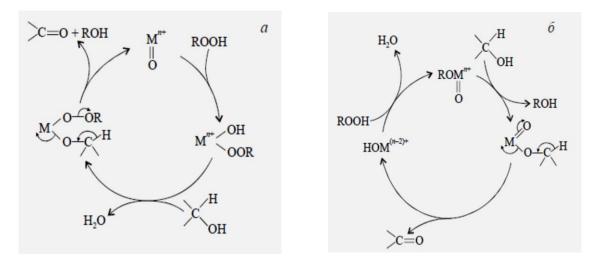


Рис. 6. Пероксометаллатная (а) и оксометаллатная (б) схема реакции на примере реакции пероксидов со спиртами.

Следует заметить, что для d-элементов [25]:

- являющихся достаточно менее активными окислителями (к примеру,
 молибден 6, вольфрам-6, титан-4, рений-7, для них свойственна
 пероксометаллатная схема;
- для наиболее активных окислителей с набольшими степенями окисления (к примеру, хром-6, марганец-5, осмий-8, рутений-6,7, для них характерен оксометаллатный механизм;

Существует еще одна отличительная черта жидкофазного окисления, катализируемого пероксополиоксометаллатами. Пай З.П. и сотрудники выяснили, что ИК-спектрах отсутствуют ЛИНИИ поглощения свойственные пероксидных соединений, это говорит о том, что получение комплексов происходит по нестандартному механизму [22]. Авторы проводили опыт по наладке получения пероксокомплексов основанных на вольфраматных ионов с применением ЧАС с атомами брома. Однако, во время проведения реакции полученные комплексы проявили хорошую активность. Пероксокомплекс разрушается, если в растворе оказываются ионы брома [26]. Во время проведения ИК-анализа было замечено, что пероксоксосоединения разрушаются из-за бромида калия применяемого как носитель в данном методе анализа. Ион брома ускоряет реакцию оксисления за счет формирования в реакционной смеси гипобромида иона, являющимся достаточно активным окислителем [27].

Noyoric и сотрудники [28] получили пероксополиоксометаллат с применением вольфрамо-кислого натрия и аминометилфосфата, задействуя межфазный катализатор, который состоит из липофильного положительного иона и иона гидросульфата [MeN(n-C₈H₁₇)₃]HSO₄ [29].

Мизуно и др. изучали эпоксидирование олефинов пероксидом водорода, катализируемые полиоксовольфраматами [30]. Полиоксовольфраматы, по их мнению, считаются наилучшими из легкорастворимых соединений

оксометаллатов в реакции образования эпоксидов, но не все являются оптимальными для синтеза короткоцепочечных эпоксидов, которые чувствительны к водорастворимой кислоте, вследствие низкого рН в водной фазе.

Гелбард провел краткий обзор работ, посвященных эпоксидированию алкенов катализаторами вольфрама (VI), содержащими пероксидные группы, иммобилизованными на органофосфорил функциональных полимерах [31].

где 1. РМА = полиметакрилатгелевого типа;

2. РМА = макропористый полиметакрилат;

$$R_1 = H, R_2, R_3 = Me$$

$$R_1,R_2,R_3 = Me$$

$$R_1, R_2 = Me, R_3 = Pr$$

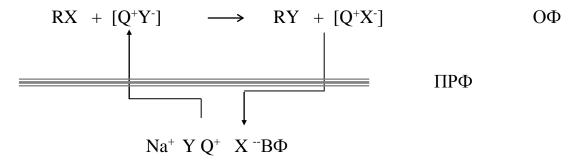
$$R_1, R_2 = Me, R_3 = C_2H_5OH$$

$$R_1,R_2,R_3 = Bu$$

Рис. 7. Пероксидные катализаторы W (VI), на основе полиметакрилата.

Гелбардии его сотрудники, также сообщили об эпоксидировании циклогексена пероксовольфрамовыми соединениями, иммобилизированными на смолах полиметакрилата аммония (рис. 7) [32]. Авторы работы пришли к выводу, что по сравнению с образцами 1 и 2, остальные катализаторы недостаточно активны и селективны по отношению к эпоксиду.

1.3.2. Влияние аминов на эффективность эпоксидирование олефинов.

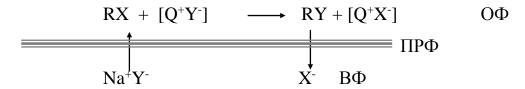

Ароматические амины слабо отличаются по эффекту синергизма, однако есть тенденция усиления при переходе от акцепторных к донорным группам, так, например, пиридин и оксид пиридина по активности почти одинаковы и близки к активности анилина. Это можно объяснить тем, что донорные группы усиливают способность атома азота образовывать комплексы, в случае триэтиламина и метилдиэтаноламина, атом азота связан с донорными группами, что усиливает комплексообразующую способность, а также данные вещества обладают хорошим сродством к обеим фазам. Трибутиламин, несмотря на донорные группы не дает должного эффекта из-за объемных заместителей и низкого сродства к воде. Атом азота в молекуле аминов и аммиака способен образовывать комплексы с различными металлсодержащими ионами. В зависимости от конформации и прочих эффектов, данная способность проявляется по-разному. В некоторых случаях проявлению данного эффекта мешают стерические затруднения, в других эффекты или сродство соединения к органическим случаях электронные веществам. Все вышеизложенные затруднения ослабляют также и способность амина к синергизму в реакции эпоксидирования олефинов [33, 34].

1.4. Механизм эпоксидирования олефинов

1.4.1. Прямое каталитическое действие в межфазной системе

Стандартная схема МФК сводится к межфазному переносу неорганических ионов жирорастворимыми противоионами. Переход в органическую фазу возможен как для ионные пары Q^+Y^- , так и их мицелл (ассоциатов) [2, 3].

Старкс был первым ученым, который предложил механизм с применением неорганических анионов в структуре «ж/ж», схема 1. [35, 36]:


При переходе иона Y^- в липофильную среду под действием ониевого катиона Q^+ получается ассоциат $[Q^+Y^-]$, который реагирует с RX путём обмена ионами. Появившаяся соль $[Q^+X^-]$ высаливается в водную среду, где Q^+ взаимодействует с анионом Y^- , цикл замыкается.

В зависимости от того, в какой фазе образуется продукт реакции, различают три типа механизма МФК [37].

После перехода иона из полярной среды в неполярную, взаимодействием между субстратом и окислителем будет проходить в неполярной фазе. Если целевое вещество получается в неполярной фазе, то интенсивность диффузии через ПРФ напрямую влияет на интенсивность его образования [38, 39].

Разложения гидро-оболочки и создания оболочки из растворителя, тоже является лимитирующем фактором в реакции. В липофильной фазе ион пары $[Q^+Y^-]$ экранирован очень слабо, поэтому данный вид реакции назван реакцией «голых анионов». В данной системе лучше подходят наименее полярные среды и наиболее жирорастворимые катионы [38]

Брендстрем и его коллеги выяснили, что для подобных процессов не обязательно миграция катализатора в полярную фазу [38]. Для систем применяющих МФК существует другой, исправленный механизм Старкса [39].

При проведении реакций с данным типом механизма МФК (с протеканием использование реакции объёме органической фазы), гидрофильных катализаторов, особенно, образующих мицеллы в водной фазе нежелательно, поскольку увеличение растворимости катализатора в водной фазе приводит к уменьшению эффективности межфазного переноса ионной пары из водной фазы в органическую. В связи с этим, структуре катионов катализатора уделяется большое внимание. С одной стороны, активность солей тетраалкиламмония в условиях МФК повышается с увеличением «рыхлости» ионной пары в органическом растворителе и, соответственно, с увеличением длины алкильного радикала и уменьшением величины эффективного положительного заряда на атоме азота [38]. С другой стороны, если в молекуле ониевой соли имеется один или два длинноцепочечных углеводородных радикалов, то довольно быстро наступает мицеллообразование, а в случае объемных и менее асимметричных молекул катализатора образование мицелл затруднено.

Способность к экстракции ионной пары из водной фазы в органическую зависит от природы органического растворителя, наличия электролитов в водной фазе, природы катиона и аниона. Наиболее гидрофильные анионы, например, OH^- , можно экстрагировать очень липофильными катионами, а наименее липофильные катионы, например, $(CH_3)_4N^+$, переносятся в органическую фазу очень липофильными анионами. Липофильность катионов изменяется в следующем ряду [38, 39]:

$$(\text{H-C}_6H_{13})_4N^+ > (\text{H-C}_5H_{11})_4N^+ \geq (C_6H_5)_4As^+ > (i\text{-}C_5H_{11})_4N^+ > (\text{H-C}_4H_9)_4P^+$$

На основании многочисленных литературных данных Демлов установил следующий ряд уменьшения липофильности анионов [40]:

Огромное количество констант экстракции было вычислено Брендстремом при исследовании данного процесса. Неполярная фаза, применяемая в данной системе, должна обладать наименьшим сродством к воде или ионные пары будут сильно экранированы водой. Как известно, СНСl₃, СН₂Сl₂ и другие подобные легкокипящие соединения, являются лучшими растворителями. У них не только хорошая экстракционная способностью для стандартной соли, но они также дешевы и легко удаляются [38].

После того, как было установлено, что процесс проходит в липофильной фазе, Оуэнс предложил механизм процесса в обратных мицеллах. Интенсификация процесса реакции происходит, за счет увеличения содержания реагентов в центре и в Штерновском слое мицелл, также за счет поддержания переходной стадии с помощью поверхностного заряда, а также из-за связи «мицелла-субстрат» и совокупности ряда различных факторов [41].

1.4.2. Обратный МФК

Перемещение реагента из полярной среды в неполярную всегда сопутствует обратное движение, происходящее по схеме «всаливания». Данная схема связана с улучшением растворимости неполярного соединения в полярной среде, при внесении межфазного переносчика.

ПАВ обладающие сродством к воде, но также способные образовывать мицеллы субстрата в полярной среде, идеально подходят как катализаторы ОМФК [38]. Субстрат с полярными фрагментами в молекуле при применении ЧАС обладает гораздо большим эффектом «всаливания».

В случаи взаимодействия иона ЧАС и полярным фрагментов в молекуле субстрата происходит ион-дипольное взаимосвязь, оно приводит к увеличению концентрации молекул субстрата в полярной фазе, следовательно, скорость ОМФК увеличиться [42].

Когда появилась способность провести ряд липофильных реакций по схеме «всаливание», то увеличился запрос к применению веществ с свойствами полярных соединений, имеющие особенность переноса заряда с молекулами липофильного субстрата. К таким соединениям можно отнести: C_5H_5NO , $4-C_5H_6N_2$ и др [43].

1.5. Синергизм

Явление вызывающее неаддитивное смену разных характеристик системы в зависимости от соотношения ее элементов называется — синергизмом. Этот эффект часто встречается в разных разделах катализа.

Рис. 8. Кривая синергизма.

Обнаружение синергизма возможно способом путём сравнения выявленных характеристик или других свойств исследуемой системы. При изучении влияния состава системы различающейся строением и отношением концентраций веществ (к примеру, ПАВ, ионов солей и других) [44].

При совместном применении нескольких катализаторов (в смешанном сплавлении, растворении, закрепления на твердые носители и др) возникают синергические эффекты, иногда даже вещества не обладающие каталитической активностью, совместно начинают её проявлять. Даже в том случае, когда эти факторы по отдельности не оказывают значительного влияния на процесс химического взаимодейсвия.

При совместного действии катализаторов с близкми химическими характеристиками и определенном соотношении, эффект синергизма проявляется гораздо чаще. В данных условиях появляются более эффективные молекулярные комплексы, так как их применение приводит к лучшему каталитическому действию. У комплексных соединений такие свойства как длины связей между атомами, вязкость, Тпл.,кип., зачастую изменяются сверхаддитивно [45].

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Глава изъята автором

ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Глава изъята автором

ВЫВОДЫ

- 1. Проведено исследование реакции эпоксидирования циклогексена пероксидом водорода в условиях межфазного катализа в присутствии фосфатооксопероксовольфрамовых соединений, образующихся *in situ*.
- 2. Исходя из данных газохроматографического анализа, установлено, что продуктами реакции являются эпоксициклогексан и циклогександиол-1,2.
- 3. Показано возможность увеличения эффективности каталической системы при совместном использовании цитилпиридиний бромида, а также третичных аминов и пиридина. Установлено, что во всех случаях наблюдается эффект синергизма.
- 4. Показано, ЧТО активность третичных аминов В реакции эпоксидирования алкенов зависит от сочетания нескольких факторов: величины обусловленного отрицательного заряда на атоме азота, наличием электронодонорных и электроноакцепторных групп, доступности неподеленной пары электронов на этом атоме, а также от гидрофильно-липофильного баланса амина.
- 5. Расчитаны значения коэффициентов синергетности и показано, что у триэтиламин имеет наибольший коэффициент синергетности k_s = 2,90

СПИСОК ЛИТЕРАТУРЫ

- 1 Паничева Л.П., Суворова В.В., Морозова Н.В., Федоров А.В. Эффективность солей тетраалкиламмония в межфазном катализе реакций дегидробромирования, алкилирования и эпоксидирования // Изв. вузов. Химия и хим.технология. 2003. Т.46 Вып.5 С.118-122.
 - 2 Демлов Э., Демлов З. Межфазный катализ. М.: Мир, 1997. 485с.
- 3 Юфит С.С. Теоретические основы и механизмы межфазного катализа //ЖВХО им. Менделеева. -1986. Т. 31. Вып.2. С.134-143.
- 4 Пай, З. П. Межфазное каталитическое окисление органических соединений пероксидом водорода в присутствии пероксополиоксометаллатов / З.П. Пай, П.В. Бердникова, А.Г. Толстиков, Т.Б. Хлебникова, Н.В. Селиванова// Катализ в промышленности. 2006. № 5. С. 12-23.
- 5 Федоров А.В. Эпоксидированиеалкенов пероксидом водорода в присутствии пероксогетерополисоединений вольфрама (VI) и фосфора (V) в условиях межфазного катализа: Дис. канд. хим. наук 02.00.03 Тюмень, 2004. 134 с.
- 6 Гольдберг Ю.Ш. Избранные главы межфазного катализа. Р.: Зинатне, 1989. 553 с.
- 7 Межфазный катализ. Химия, катализаторы и применение. / Под ред. Старкса Ч.М. – М.: Химия. – 1991. – 158 с
- 8 Вебер В., Гокель Г. Межфазный катализ в органическом синтезе. М.: Мир. 1980. 215 с.
- 9 Гольдберг Ю.Ш. Избранные главы межфазного катализа. Р.: Зинатне. 1989. 553 с.
- 10 IshiiY., Yamawaiki Ê., Ura Ò., YamadaH., Yoshida Ò., OgawaM. Hydrogen peroxide oxidation catalyzed by heteropoly acidscombined with cetylpyridinium chloride: epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols,

and oxidative cleavage of 1,2-diols and olefins // J. Org. Chem. − 1988. − V.-53.–№15. − P.3587-3593.

- 11 Sakata Y., Ishii Y. A versatile transformation of vic-diolsinto a-hydroxyketone seithhydrogen peroxide catalized by peroxotungstophosphates. // J. Org. Chem. 1991. V. 56. P. 6233-6235.
- 12 Ishii Y., Yoshida T., Yamawaki K., Ogawa M. Lactone synthesis by a-, w-, diols with hydrogen peroxide catalyzed by heteropoly acids combined with cetykpyridinium chloride. // J. Org. Chem. 1998. V. 53. P. 5549-5552.
- 13 W.P. Griffith, Trans. Met. Chem. 16 (1991) 548.8Ishii, Y. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1, 2-diols and olefins / Y. Ishii, K. Yamawaki, T. Ura // The Journal of Organic Chemistry. − 1988. − T. 53. − №. 15. − C. 3587-3593.
- 14 Oguchi, T. Epoxidation of alpha, beta-unsaturated carboxylic acid swithhydrogen peroxide by heteropoly acids / T. Oguchi // Chemistry Letters. 1989.
- 15 Matoba, Y. Epoxidation of Allylic Alcohols with Hydrogen Peroxide Catalyzedby [PMO12O40]3-[C5H5N+(CH2)15CH3]3 / Y. Matoba ,H. Inouea , J-I. Akagi, T. Okabayashi, Y. Ishii, M. Ogawa // Synthetic Communications. 1984. T. $14. N_{\odot}$. 9. C. 865-873.
- 16 Kuznetsova, L. I. Oxidation of allyl alcohol by hydrogen peroxide in the presence of phosphotungstic heteropoly acid / L. I. Kuznetsova, R. I. Maksimovskaya, M. A. Fedotov // Russian Chemical Bulletin. − 1985. − T. 34. − №. 3. − C. 488-493.
- 17 Venturello, C. A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions / C. Venturello, E. Alneri, M. Ricci // The Journal of Organic Chemistry. -1983. T. 48. No. 21. C. 3831-3833.

- 18 Venturello, C. Oxidative cleavage of 1, 2-diols to carboxylic acids by hydrogen peroxide / C. Venturello, M. Ricci // The Journal of Organic Chemistry. -1986. -T. 51. $-N_{\odot}$. 9. -C. 1599-1602.
- 19 Kozhevnikov, I. V. Catalysis by heteropoly acid sandmulticomponentpolyoxometalatesin liquid-phasereactions / I. V. Kozhevnikov // ChemicalReviews. − 1998. − T. 98. − №. 1. − C. 171-198.
- 20 Duncan, D.C. Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of $\{PO4[WO(O2)2]4\}3 / D.C.$ Duncan, R.C. Chambers, E. Hecht, C.L. Hill // Journal of the American Chemical Society. -1995. -T. 117. No. 2. -C. 681-691.
- 21 Timofeeva, M. N. Epoxidation of cycloolefins with hydrogen peroxide in the presence of heteropoly acids combined with phase transfer catalyst / M.N. Timofeeva, Z.P. Pai,A.G. Tolstikov, G.N. Kustova, N.V. Selivanova, P.V. Berdnikova, K.P. Brylyakov, A.B. Shangina, V.A. Utkin // Russian chemical bulletin. − 2003. − T. 52. − №. 2. − C. 480-486.
- 22 Пай, З.П. Каталитическое окисление олефинов и спиртов пероксидом водорода до моно-и дикарбоновых кислот в двухфазной системе / З. П. Пай, А.Г.Толстиков, П.В. Бердникова, Г.Н. Кустова, Т.Б. Хлебникова, Н.В. Селиванова, А.Б. Шангина, В.Г. Костровский // Известия Академии наук. Серияхимическая. − 2005. № 8. С. 1794-1801
- 23 Duncan, D.C. Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of $\{PO4[WO(O2)2]4\}3 / D.C.$ Duncan, R.C. Chambers, E. Hecht, C.L. Hill // Journal of the American Chemical Society. -1995. -T. 117. No. 2. -C. 681-691.

- 24 Bi,Y.Oxidation of long-chain primary alcoholstoacid sover the quaternary ammonium peroxotungstophosphate catalyst system / BiYing-li , ZhouMei –juan, HuHong-yu, WeiChang-ping, LiWen-xing, ZhenKai –ji// ReactionKineticsandCatalysisLetters. 2001. T. 72. №. 1. C. 73-82.
- 25 Sheldon, R.A. New developments in catalytic alcohol oxidations for fine chemicals synthesis / R.A. Sheldon, I. Arends, A. Dijksman// Catalysis Today. -2000. T. 57. N2. 1. C. 157-166.
- 26 Duncan, D.C. Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of $\{PO4[WO(O2)2]4\}3 / D.C.$ Duncan, R.C. Chambers, E. Hecht, C.L. Hill // Journal of the American Chemical Society. -1995. -T. 117. No. 2. -C. 681-691
- 27 Пай З.П. Межфазное каталитическое окисление органических соединений пероксидом водорода в присутствии пероксополиоксометаллатов / З.П. Пай, П.В. Бердникова, А.Г. Толстиков // Катализ в промышленности. №5. 2006. С. 16-17.
- 28 Федоров А. В. Эпоксидирование алкенов пероксидом водорода в присутствии пероксогетерополисоединений вольфрама (VI) и фосфора (V) в условиях межфазного катализа: Дис. канд. хим. наук 02.00.03 Тюмень. 2004. 134с.
- 29 Venturello, C. Anew, effective catalytic system fo repoxidation of olefins by hydrogen peroxide under phase-transfer conditions / C. Venturello, E. Alneri, M. Ricci // The Journal of Organic Chemistry. -1983. -T. 48. N21. C. 3831-3833.
- 30 Mizuno, N. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates / N. Mizuno, K. Yamaguchi, K. Kamata // Coordination chemistry reviews. 2005. T. 249. №. 17. C. 1944-1956.

- 31 Sharpless K.B., TownsendJ.M., Williams D.R. On themechanis mofep oxidation of olefins by covalent peroxides of molybdenum (VI) // J. Amer. Chem. Soc.-1972.- V.94.- №1.- P.295-297.
- 32 Salles Laurent, Aubry Catherin. 31 Pand 138 WNMR spectroscopice videncefornovel peroxospecies in the «H3 [PW12O40] *yH2O/ H2O2».// Inorg. Chem.-1994.- V.33.- №5.- P.2341-2346
- 33 Matlack A. Some recent trends and problems in green chemistry / A. Matlack // Green Chem. 2003. №5. P. 13-25.
- 34 Grigoropoulou G., Clark J., Elingsb J., Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant // Green Chemistry. 2003. V.5, p. 1-7
- 35 StarksC.M.Phase transferCatalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts. // J. Amer. Chem/ Soc. -1971.-V.93.- №1.-P.195- 199.
- 36 Островский В.А. Межфазный катализ органических реакций // Соросовский образовательный журнал 2000. Т. 6. №11. С.30-33.
 - 37 Юфит С.С. Механизм межфазного катализа. М.: Наука, 1984.- 264 с.
- 38 Яновская Л.А., Юфит С.С. Органический синтез в двухфазных системах. -М.: Химия, 1982.-184 с.
- 39 Brandstorom A. Preparative I on Pair Epoxidation. –Stockholm: Apotekarsocieteten.1974.- 275 p.
 - 40 Демлов Э., Демлов З. Межфазный катализ. М.: Мир, 1997. 485с.
- 41 Кимура Т. Мицеллярный катализ и его применение в органической химии.Химэн. 1976. Т.14. №8-9. С.449-463.
- 42 Гольдберг Ю.Ш. Избранные главы межфазного катализа. Р.: Зинатне, 1989. 553 с.

- 43 Симонян Г.С. Конденсация Михаэля в двухфазной системе. Применение метода обращенного межфазного катализа к реакции бутилакрилата и диэтаноламином в системе вода-гептан / Г.С. Симонян, Н.М. Бейлерян // Кинетика и катализ. -2002. Т. 43. № 3. С. 367-370.
- 44 Наумова Ю.А. Синергизм и синергические эффекты в технологии переработки полимеров, доцент, кафедра Химии и технологии переработки эластомеров им. Ф.Ф. Кошелева МИТХТим. М.В. Ломоносова, Москва, Вестник МИТХТ, Москва-2013, т.8, №3
- 45 Голодов, В.А. Синергизм в катализе, далее везде / В.А. Голодов //Химия и жизнь. 2001. №11 С. 12.