МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ НАУК

Кафедра фундаментальной математики и механики

РЕКОМЕНДОВАНО К ЗАЩИТЕ В ГЭК И ПРОВЕРЕНО НА ОБЪЕМ ЗАИМСТВОВАНИЯ

> Заведующий кафедрой *д.ф.м.н., доцент* Татосов А.В. 2018 г.

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

ГРУППОВОЙ АНАЛИЗ ОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ В МОДЕЛИ ФИЛЬТРАЦИИ 01.04.01~Mame маmu ka

Магистерская программа «Математическое моделирование»

Выполнил работу Студент 2 курса очной формы обучения

Руководитель работы ст. преподаватель кафедры ФМиМ

Руководитель работы к.ф.-м.н., доцент кафедры ФМиМ

Рецензент мл. научный сотрудник ИПТМ им. С.А. Христиановича СО РАН

T. 1/

Геннадий Сергеевич

BH

Николай Федорович

Бельмецев

Бакалдин

But

Басинский Константин Юрьевич

2

Губкин Алексей Сергеевич

Тюмень, 2018

Оглавление

Введение	3
Определения и формулировки теорем из теории групп Ли	
Общие сведения о группах Ли	5
Генератор группы	6
Теорема Ли	6
Инвариант группы	7
Многопараметрические группы Ли. Алгебры Ли	7
Афтоморфизмы алгебр Ли.	9
Инвариантные решения	11
Постановка задачи	14
Основная допускаемая группа Ли и внутренние автоморфизмы	16
Оптимальные системы подалгебр	18
Инвариантное решение	27
Заключение	28
Список питературы	29

Введение

Как известно, разнообразные процессы в физике, химии, биологии и экономике, а также в важнейшей области исследования, приводящей к развитию большинства отраслей математики, могут быть представлены в виде дифференциальных уравнений. Существует множество различных способов изучения свойств и построения дифференциальных уравнений. Некоторые из них известны из таких дисциплин как функциональный анализ, линейная алгебра, численный анализ и дифференциальная геометрии.

Софус Ли (17.12.1842.г – 18.02.1899г.) – норвежский ученый конца 19 века, создал теорию непрерывных групп Ли, объединяющую многие интуитивные методики к построению решений дифференциальных уравнений и описанию их свойств. Л. В. Овсянников (22.04.1919г. – 23.05.2014г.) - выдающийся российский ученый, который внес большой вклад в развитие механики и прикладной математики, возродил интерес к групповому анализу. В своих работах он показал, что Софус Ли пользовался описанием свойств дифференциальных уравнений при помощи допускаемых групп.

Эта теория объединила методы алгебры, анализа и геометрии, а в последствии стала одним из краеугольных камней современной математики. Непрерывные группы, так же называемые группы Ли, оказали глубокое влияние на многие области математики и физики, такие как теория гравитации, гидродинамика, квантовая механика, теория управления и другие. Конструкция группы симметрий является основой применения групп Ли при изучении дифференциальных уравнений. Главное открытие С. Ли заключалось в том, что в случае непрерывных групп преобразований эти нелинейные уравнения можно заменить на более простые условия, перейдя от преобразований, близких к тождественному, к порождающим их векторным полям.

Зная однопараметрическую группу симметрий, в случае обыкновенных дифференциальных уравнений можно понижать порядок уравнения на единицу. Софус Ли показал, что этот подход позволяет привести к единообразию различные частные приемы интегрирования обыкновенных дифференциальных уравнений.

Данная работа посвящена исследованию групповых свойств и построению точных инвариантных решений уравнения фильтрации в трехмерном случаи.

Определения и формулировки теорем из теории групп Ли

Общие сведения о группах Ли

Удобнее всего ввести понятие группы Ли на примере преобразования плоскости $(x, y) \rightarrow (\bar{x}, \bar{y})$, которое задается следующими формулами:

$$\begin{cases} \bar{x} = \varphi(x, y, a), \\ \bar{y} = \psi(x, y, a), \end{cases} \quad a \in R.$$

Рассмотрим произвольную точку P = (x, y)в плоскости (x, y). Переход этой точки в новое положение $\overline{P} = (\overline{x}, \overline{y})$ - это изменение переменных x, y, z связанное с параметром $a(a \in R) - T_a(P) = \overline{P}$:

$$T_a$$
: $\bar{x} = \varphi(x, y, a), \quad \bar{y} = \psi(x, y, a),$

где функции φ и ψ удовлетворяют условиям при a=0

$$T_0: \varphi(x, y, 0) = x, \quad \psi(x, y, 0) = y,$$
 (1)

а T_0 : — тождественное преобразование:

$$T_0(P) = P$$
.

Функции $\varphi(x, y, a)$ и $\psi(x, y, a)$ функционально независимы, а значит их якобиан отличен от нуля:

$$\begin{vmatrix} \varphi_x & \varphi_y \\ \psi_x & \psi_y \end{vmatrix} \neq 0.$$

Тогда, существует обратное преобразование T_a^{-1} :

$$T_a^{-1}(\overline{P}) = P. (2)$$

Если преобразование $T_a:(x,y)\to(\bar{x},\bar{y})$, то $T_b:(\bar{x},\bar{y})\to(\bar{x},\bar{y})$. (3)

Существует композиция (произведение) преобразований $T_b T_a$, определяемое как последовательное выполнение преобразований T_a и T_b .

С геометрической точки зрения T_a перемещает точку P в точку $\overline{P}\big(T_a(P)=\overline{P}\big)$, а T_b в положение $\overline{\overline{P}}\big(T_b(\overline{P})=\overline{\overline{P}}\big)$. Таким образом, произведение T_bT_a переносит P в конечное положение $\overline{\overline{P}}$ без промежуточной остановки в точке \overline{P} .

$$T_a(P) = \overline{P} \cdot T_b(\overline{P}) = (\overline{\overline{P}}) = T_b T_a(P)$$

Если условия (1, 2, 3) выполняются, то преобразования образуют группу. Группа – любое множество, на котором определена операция умножения, и выполнены следующие свойства:

- 1. Ассоциативность.
- 2. Произведение двух элементов группы дает элемент группы.
- 3. Существует единица группы.
- 4. Существует обратный элемент для каждого элемента.

Теорема. Параметр a всегда можно выбрать таким образом, чтобы, $a_0 = 0$, а f(a,b) = a + b. Тогда этот параметр будет называется каноническим.

Пример. Группа переносов (трансляций) вдоль вещественной прямой (оси x):

$$\vec{x} = T_a x = x + a \tag{4}$$

$$\overline{\overline{x}} = T_b \overline{x} = T_b T_a x = \overline{x} + b = (x+a) + b = x + (a+b)$$

$$\tag{5}$$

Генератор группы

Генератор группы (инфинитезимальный оператор) – это оператор вида

$$\widetilde{X} = \xi \frac{\partial}{\partial x} + \eta \frac{\partial}{\partial y}.$$
 (6)

Если есть дифференцируемая функция F(x, y), то действие генератора на F даст следующий результат:

$$\widetilde{X}F = \xi \frac{\partial F}{\partial x} + \eta \frac{\partial F}{\partial y} \,. \tag{7}$$

Теорема Ли

Зная генератор, можно восстановить полную группу преобразований, то есть по бесконечно малому преобразованию можно восстановить конечное преобразование. Для этого нужно решить систему уравнений Ли:

$$\begin{cases} \frac{d\overline{x}}{da} = \xi(\overline{x}, \overline{y}), & \overline{x}(a=0) = x, \\ \frac{d\overline{y}}{da} = \eta(\overline{x}, \overline{y}), & \overline{y}(a=0) = y. \end{cases}$$

Инвариант группы

Инвариантом группы называется функция F(x, y), вид которой не меняется при групповых преобразованиях: $F(\bar{x}, \bar{y}) = F(x, y)$.

Необходимое и достаточное условие инвариантности – действие генератора на функцию должно давать 0:

$$\widetilde{X}F = 0$$

$$\xi_1 \frac{\partial F}{\partial x_1} + \dots + \xi_n \frac{\partial F}{\partial x_n} = 0$$
(8)

Решение такого уравнения эквивалентно решению системы дифференциальных уравнений (уравнений характеристик):

$$\frac{dx_1}{\xi_1} = \dots = \frac{dx_n}{\xi_n} \tag{9}$$

Решение всегда можно представить в виде:

$$J_{i}(x) = C_{i} F(J_{1}, J_{2}, ..., J_{n-1}),$$
(10)

где i = 1,2,...,(n-1) — номер уравнения, (n-1) — количество уравнений в системе.

Функция J(x)— базисный инвариант. Следовательно, любая достаточно гладкая функция F(J), зависящая от базисного инварианта, тоже будет инвариантом.

Многопараметрические группы Ли. Алгебры Ли.

Рассмотрим пространство L линейных дифференциальных операторов: $L = \{\xi_{\alpha}^{i}(x)\partial_{x^{i}}, \alpha = 1.r\}$, (г-мерный базис в пространстве). Коммуникатором операторов: $X = \xi^{i}(x)\frac{\partial}{\partial x^{i}} \in L$; $Y = \eta^{i}(x)\frac{\partial}{\partial x^{i}} \in L$ называется оператор[X,Y], определяемый формулой:

$$[X,Y] = XY - YX = \xi^{i}(x) \frac{\partial \eta^{j}(x)}{\partial x^{i}} \frac{\partial}{\partial x^{j}} - \eta^{i}(x) \frac{\partial \xi^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}} = \left(\xi^{i} \frac{\partial \eta^{j}}{\partial x^{j}} - \eta^{i} \frac{\partial \xi^{j}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{j}}$$

Для любых трех операторов $X_1, X_2, X_3 \in L$ выполнены свойства коммутатора:

- 1) $[C_1X_1 + C_2X_2, X_3] = C_1[X_1, X_3] + C_2[X_2, X_3]$ билинейность.
- 2) $[X_1, X_2] = -[X_2, X_1]$ антисимметричность.
- 4) Пусть при замене $(x) \to (y)$ операторы переписываются, как $X \leftrightarrow X'$. Тогда, $[X_1', X_2'] = [X_1, X_2]'$ Инвариантность относительно замены координат:
- 5) $[X_1, X_2] = [X_1, X_2], \forall k \in \mathbb{N}$ инвариантность относительно продолжения.
- 6) Сохранение инвариантности многообразия: если многообразие $M \subset R^n$ инвариантно относительно операторов X_1, X_2 , то оно инвариантно и относительно их коммутатора $[X_1, X_2]$.

Определение: Если линейное пространство L_r , $\dim L_r = r$ (где $\dim L_r = r$ размерность), замкнуто относительно операции коммутирования — оно называется алгеброй Ли операторов.

Из свойств коммутатора следует, что линейное пространство L_r операторов, допускаемых произвольной системой дифференциальных уравнений, образует алгебру Ли. Если $0 < r < \infty$, то в алгебре L_r можно выделить базис операторов $\{X_1,...,X_r\}$, тогда любой оператор $X \in L_r$ можно разложить по этому базису. В виду того, что $Y \in L_r$, $[X,Y] \in L_r$, тогда $[X_i,X_j]$ можно разложить по базису $= C_{ij}^k X_k$, где i,j,k,=1,...,r. C_{ij}^k - константы, которые называются структурными константами алгебры Ли L_r .

Определение: Совокупность однопараметрических преобразований, построенных для каждого оператора из алгебры Ли L_r , называется локальной r-параметрической группой Ли преобразований G_r .

Определение: Две подалгебры $H, K \subset L$ - подобные, если существует внутренний автоморфизм $A \subset IntL, K = AH$.

$$\overline{X}^i = f^i(x,a), X \in \mathbb{R}^n, a \in \mathbb{R}.$$

Для этой однопараметрической группы есть оператор: $X = \xi^i(x) \frac{\partial}{\partial x^i}$.

Этот оператор в новых координатах $\overline{X} \to X'$. Пусть A — внутренний автоморфизм и пусть $J: R^n \to R$ инвариант оператора X.

Лемма: Если функция $J(\overline{X})$ является инвариантом оператора AX в координатах $\{\overline{X}^i\}$. Так как инварианты подалгебр (H,K)одинаковы, то соответствующие фактор-системы эквивалентны.

Совокупность класса представителей не подобных подалгебр (по одной из каждого класса) называется оптимальной системой подалгебр и обозначается ΘL . Совокупность неподобных подалгебр размерности $S:\Theta_s L$.

Рассмотрим случай конечно мерной алгебры Ли. Кажыдй элемент алгебры может быть разложен по базису: $X = \varepsilon^i X_i$. $M = H_\alpha = \varepsilon^i_\alpha X_i$, $\{\alpha = 1,...,S\}$. Каждая подалгебра m имеет матрицу коэффициентов вида:

$$\xi = \begin{pmatrix} \varepsilon_1^1, ..., \varepsilon_1^n \\ \\ \varepsilon_s^1, ..., \varepsilon_s^n \end{pmatrix}.$$

Пусть M имеет размерность S, тогда $rank\xi=S$. Если выполнено $\left[H_{\alpha},H_{\beta}\right]=K_{\alpha\beta}^{\gamma}H_{\gamma}$ для матрицы ξ имеется матрица эквивалентная по строкам и $H_{\alpha}'=\omega_{\alpha}^{\beta}H_{\beta}$, где $\det\left\|\omega_{\alpha}^{\beta}\right\|\neq0$. Такие преобразования строк называются β преобразованиями. Они представляют собой линейное преобразование базиса L.

Помимо β -преобразований на координаты ε_{ij} действуют внутренние метоморфизмы. Они действуют на столбцах матрицы ξ . Под действием β и α преобразований подалгебра M переходит в подобную подалгебру. Это даёт возможность упростить матрицу ξ , сохраняя инварианты группы.

Афтоморфизмы алгебр Ли.

Автоморфизмом алгебры Ли называется невырожденное линейное преобразование $L \to L$, сохраняющее коммутатор.

$$A[X,Y] = [AX,AY], \forall X \in L$$
(11)

Среди всех автоморфизмов алгебры L выберем зависящее от параметра, образующие группы Ли с каноническим параметром: $A(t): L \to L$.

$$A(t+s) = A(t)A(s); \quad A(0) = I. \text{ При } t = 0.$$
 (12)

Группа линейных преобразований, удовлетворяющих свойствам (11) и (8) называется грппой автоморфизмов алгебры Ли L: AutL.

Дифференцируя (11) по параметру t в точке t = 0 тождественного преобразования получим: дифференцированием алгебры Ли L называется $d: L \to L$, удовлетворяющее свойству:

$$d[X,Y] = [dX,Y] + [X,dY], \quad \forall X,Y \in L.$$

$$(13)$$

Множество всех дифференцирований алгебры Ли L само образует алгебры Ли с коммутатором $[d_1,d_2]=d_1d_2-d_2d_1$. Эту алгебру называют алгеброй дифференцирования алгебры Ли L и обозначают D_L , здесь $[d_1,d_2]\in D_L$.

 d_1 -линейное преобразование; $d_1\,d_2$ - последовательное действие преобразований $[d_1,d_2]\!\in D_L$.

 $D_{\scriptscriptstyle L}$ -играет роль алгебры Ли для внутренних автоморфизмов.

Для любой однопараметрической подгруппы группы автоморфизмов отображения

$$a=rac{dA(t)}{dt}|t=0$$
 - является дифференцированием алгебры Ли $L\in D_L$.

Для любого дифференцирования из алгебры Ли можем восстановить однопараметрическую группу автоморфизмов $A(t) \subset AutL$ как решение уравнения Ли:

$$\frac{dA}{dt} = aA, A(0) = I. (14)$$

I – тождественное преобразование.

(10) удобно переписать в виде действия его любого $X \in L; \overline{X} = AX$

$$\frac{d\overline{X}}{dt} = d\overline{X}$$

$$\overline{X}\big|_{t=0} = X$$
(15)

 $X = \varepsilon^i X_i$; $\{X_i\}$ -базис L.

Уравнение Ли для поиска внутренних автоморфизмов можно записать в виде:

 $(ad Y) \in ad L$

$$\frac{d\overline{X}}{dt} = [Y, \overline{X}]$$

$$\overline{X}|_{t=0} = X$$
(16)

Для конечномерной алгебры Ли L $X=\varepsilon^iX_i; \overline{X}=\bar{\varepsilon}^iX_i$ $Y=\alpha^iX^i$,

где $\bar{\varepsilon}^i = \bar{\varepsilon}^i(t)$.

$$\left[\alpha^{i}X_{i}, \overline{\varepsilon}^{k}X_{k}\right] = \alpha^{i}\overline{\varepsilon}^{k}\left[X_{i}, X_{k}\right] = \alpha^{i}\overline{\varepsilon}^{k} = \alpha^{i}\overline{\varepsilon}^{k}C_{ik}^{j}X_{j}$$
, тогда

$$X_{j} \frac{d\overline{\varepsilon}^{j}}{dt} = X_{j} \alpha^{i} \overline{\varepsilon}^{k} C_{ik}^{j}; \quad \overline{\varepsilon}^{i} \Big|_{t=0} X_{i} = \varepsilon^{i} X_{i}$$

$$\frac{d\overline{\varepsilon}^{j}}{dt} = \alpha^{i} \overline{\varepsilon}^{k} C_{ik}^{j}, \qquad Y = \alpha^{i} X_{i}$$

$$\overline{\varepsilon}^{j} \Big|_{t=0} = \varepsilon^{j}$$

$$(17)$$

 $Y = X_i$ тогда имеем набор базисных автоморфизмов.

$$A_{1}(t_{1}): \begin{bmatrix} \frac{d\overline{\varepsilon}^{j}}{dt_{1}} = C_{1k}^{j} \overline{\varepsilon}^{k} \\ \overline{\varepsilon}^{j} \Big|_{t_{1}=0} = \varepsilon^{j} \end{bmatrix}$$
...
$$A_{i}(t_{i}): \begin{bmatrix} \frac{d\overline{\varepsilon}^{j}}{dt_{i}} = C_{ik}^{j} \overline{\varepsilon}^{k} \\ \overline{\varepsilon}^{j} \Big|_{t_{i}=0} = \varepsilon^{j} \end{bmatrix}$$
(18)

(14) является уравнением поиска внутренних автоморфизмов.

Инвариантные решения

Решение F – инвариантное H решение уравнений E , если F является инвариантным многообразием группы $H \subset G_r$.

Условия существования инвариантных решений:

1) Необходимое
$$\left\| \frac{\partial I^{\tau}}{\partial u^{j}} \right\| = m$$

2)
$$r_*(\xi) = r_*(\xi, \eta)$$
 - это условие проще для проверки.

Теорема: Пусть система дифференциальных уравнений E допускает группу H, для которой выполнено одно из условий, тогда существует фактор-система $\frac{E}{H}$, связывающая только инварианты $I^{\tau}(\tau=1,...,t)$, функции от них $F^k(I), k=1,...,m$ и функции, производные по их инвариантам. При этом система $\frac{E}{H}$ обладает свойствами:

- 1) Любое H -инвариантное решение, записанное в виде $F^k(I) = 0, (k = 1,..m),$ такое что F^k удовлетворяет система $\frac{E}{H}$.
- 2) Любое решение фактор-системы $\frac{E}{H}$, для которого $\left\|\frac{\partial F^k}{\partial I^\tau}\right\| = m$ даёт инвариантное H -решение системы E, в виде $F^k\big(I(x,u)\big) = 0, \big(k=1,...,m\big).$

Инвариант $\frac{E}{H}$ удобно записывать в виде:

$$I: \begin{cases} I^{1}(x,u),...,I^{m}(x,u) \\ \lambda^{1} = I^{m+1}(x),...,\lambda^{\rho} = I^{t}(x) \end{cases}$$

Число $\rho = n - r_*$ является рангом *H* -инвариантного решения.

Н - инвариантное решение можно представить в виде:

$$I^{k}(x,u) = U^{k}(\lambda^{1}(x),...,\lambda^{\rho}(x)), (k = 1,...,m)$$

После приведения подобных и сокращения на ненулевые коэффициенты получим фактор-систему $\frac{E}{H}$, зависящую от $\lambda^i, U^k \left(\lambda^1, ..., \lambda^\rho\right)$ и производных по λ_{k^i} . Следует отметить, что $\frac{E}{H}$ проще исходной системы E, так как связывает функции от меньшего числа независимых переменных.

Если ρ = 1, то фактор-система $\frac{E}{H}$ является системой обыкновенного дифференциального уравнения.

Если $\rho=0$, то фактор-система $\frac{E}{H}$ будет системой алгебраических уравнений, связывающая константы.

Инвариантное H-решение называется частным решением уравнений E, связанное с симметриями рассматриваемой группы H.

Постановка задачи

В соответствии с моделью, предложенной Баренблаттом Г.И. с соавторами [1], трещиновато-пористый коллектор состоит из слабо сжимаемых пористых блоков, слабодеформируемых трещин, причем $k_1 \gg k_2$, а $m_2 \gg m_1$. Здесь индекс 1 относится к трещинам, а индекс 2 к блокам. Скоростью фильтрации в блоках пренебрегают по сравнению со скоростью фильтрации в трещинах ($w_1 \gg w_2 \gg 0$), при этом фильтрация по трещинам подчиняется закону Дарси. Обмен жидкостью между блоками и трещинами предполагается пропорциональным разности давления в блоках и трещинах.

Таким образом, неустановившуюся плоско-радиальную фильтрацию в трещиновато-пористой среде можно описывать системой уравнений (1,2):

$$w_1 = -\frac{k_1}{\mu} \frac{\partial p_1}{\partial r}, w_2 = 0, \tag{1}$$

$$\frac{\rho_o}{r} \frac{\partial}{\partial r} (rw_1) + \frac{\partial}{\partial t} (m_1 \rho) - q = 0, \qquad \frac{\partial}{\partial t} (m_2 \rho) + q = 0$$
 (2)

где w - скорость фильтрации, k - проницаемость, p - давление, μ - вязкость, r - радиальная координата, m - пористость, ρ - плотность жидкости, t - время, q - массовый обмен жидкостью между блоками и трещинами.

Уравнение

$$(\lambda - \Delta)u_t = \alpha \Delta u \tag{3}$$

первоначально было получено в теории фильтрации жидкости[1]. Данное уравнение моделирует динамику давления жидкости, фильтрующейся в трещиновато-пористой среде. Позже выяснилось, что уравнение (3) моделирует также процесс влагопереноса в почве [2] и процесс теплопроводности с "двумя температурами".

Модельное представление Баренблатта—Желтова—Кочиной фильтрации жидких и газообразных углеводородов в анизотропных трещиновато-пористых и слоисто-неоднородных пластах приводит ([3], гл. 7, § 1) к дифференциальному уравнению в частных производных. Пренебрегая в нем

изменением по времени фильтрационного потока в поперечном к пласту направлении, приходим к уравнению относительно давления в трещинах пласта:

$$\frac{\partial V}{\partial t} - \omega \left(\frac{\partial^3 V}{\partial x^2 \partial t} + \frac{\partial^3 V}{\partial y^2 \partial t}\right) - \chi \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2}\right) = \chi_0 \frac{\partial^2 V}{\partial z^2},\tag{4}$$

что соответствует уменьшению размеров блоков и возрастанию плотности трещиноватости в этом направлении ([4], гл. 5, § 5.1), где

$$\omega = \frac{k}{ab}, \ \chi = c\omega, \ \omega_0 = \frac{k_0}{ab}, \ \chi_0 = c\omega_0. \tag{5}$$

а, b и с – положительные постоянные, зависящие от геометрических характеристик пласта и свойств фильтрующейся жидкости.

После введения замены вида:

$$x = \frac{1}{\sqrt{\omega}}\tilde{x}$$
; $y = \frac{1}{\sqrt{\omega}}\tilde{y}$; $z = \sqrt{\frac{c}{\chi_0}}\tilde{z}$; $t = \tilde{c}t$; $V = u$. (6)

и далее опуская у \tilde{x} , \tilde{y} , \tilde{z} , \tilde{c} волну, уравнение (4) примет вид:

$$u_t - u_{xxt} - u_{yyt} - u_{yy} - u_{xx} - u_{zz} = 0 (7)$$

Используя замену (6) можно вернуться к уравнению вида (4).

Уравнение (7) является псевдопараболическим соболевского типа, которое неразрешено относительно производной по времени. Основным объектом исследования в данной работе является уравнение (7).

Основная допускаемая группа Ли и внутренние автоморфизмы

Пользуясь критерием инвариантности дифференциального многообразия найдем основную допускаемую группу Ли уравнения (4). Оператор допускаемой группы будем искать в виде:

$$\xi^{t} \frac{\partial}{\partial t} + \xi^{x} \frac{\partial}{\partial x} + \xi^{y} \frac{\partial}{\partial y} + \xi^{z} \frac{\partial}{\partial z} + \eta \frac{\partial}{\partial u}.$$

Действие продолженного оператора[6] на дифференциальное многообразие (4) в точках этого многообразия позволяет получить систему определяющих уравнений для поиска коэффициентов оператора X:

$$\eta_{t,u} = 0, \eta_{u,u} = 0, \eta_{u,x} = 0, (\eta_{u,y} = 0, \eta_{u,z} = 0, \eta_{x,t,x} = \frac{1}{\omega} \left(-\chi \eta_{x,x} - \chi \eta_{y,y} - \eta_{y,t,y} \omega - \chi_0 \eta_{z,z} + \eta_t \right), \\
\xi_t^t = 0, \xi_u^t = 0, \xi_x^t = 0, \xi_z^t = 0, \xi_z^t = 0, \xi_u^t = 0, \xi_u^t = 0, \xi_x^t = 0,$$

Решение системы имеет вид:

$$\begin{split} &\xi^{x} = -C_{1}y + C_{2}; \ \xi^{y} = C_{1} + C_{3}; \ \xi^{z} = C_{4}; \ \xi^{t}C_{5}; \\ &\eta = \left(\frac{1}{e^{\sqrt{c_{2}x}}e^{\sqrt{c_{3}y}}} \left(C_{6}e^{c_{1}t}C_{7} \left(\left(e^{\sqrt{c_{2}x}}\right)^{2}C_{8} + C_{9}\right) \left(C_{10}e^{\sqrt{c_{3}y}}\right)^{2} + C_{11}\right) \cos\left(\frac{\sqrt{(\omega c_{2} + \omega c_{3} - 1)c_{1} + (c_{2} + c_{3})\chi}z}{\sqrt{\chi_{0}}}\right) + \\ &+ C_{12}e^{c_{1}t}C_{7} \left(\left(e^{\sqrt{c_{2}x}}\right)^{2}C_{8} + C_{9}\right) \left(C_{10}\left(e^{\sqrt{c_{3}y}}\right)^{2} + C_{11}\right) \sin\left(\frac{\sqrt{(\omega c_{2} + \omega c_{3} - 1)c_{1} + (c_{2} + c_{3})\chi}z}{\sqrt{\chi_{0}}}\right) + \\ &+ C_{12}e^{c_{1}t}C_{7} \left(C_{13}ue^{\sqrt{c_{2}x}}e^{\sqrt{c_{3}y}}\right) + u_{0}(t, x, y, z) \end{split}$$

где $u_0(t, x, y, z)$ — произвольное решение исследуемого уравнения (7).

Конечную часть группы Ли можно представить в виде шестимерной алгебры Ли L_6 , порождаемая операторами:

$$X_{1} = \frac{\partial}{\partial t}; X_{2} = \frac{\partial}{\partial x}; X_{3} = \frac{\partial}{\partial y}; X_{4} = \frac{\partial}{\partial z}; X_{5} = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}; X_{6} = u \frac{\partial}{\partial u};$$
(8)

Таблица коммутаторов шестимерной алгебры имеет вид L_6 (9):

	X_1	X_2	X_3	X_4	X_5	X_6
X_1	0	0	0	0	0	0
X_2	0	0	0	0	X_1	0
X_3	0	0	0	0	- X ₂	0
X_4	0	0	0	0	0	0
X_5	0	- X ₁	X_2	0	0	0
X_6	0	0	0	0	0	0

Ненулевые структурные константы имеют вид:

$$C_{25}^1 = 1; C_{52}^1 = -1;$$

 $C_{53}^2 = 1; C_{35}^2 = -1;$

В виду замкнутости набора $X_1, X_2, X_3, X_4, X_5, X_6$ относительно операции коммутации эти операторы образуют базис шестимерной группы L_6 .

Для данной алгебры Ли базисные внутренние автоморфизмы имеют вид:

$$A_{1}(t_{1}): \bar{\varepsilon}^{1} = \varepsilon^{1}; \bar{\varepsilon}^{2} = \varepsilon^{2}; \bar{\varepsilon}^{3} = \varepsilon^{3}; \bar{\varepsilon}^{4} = \varepsilon^{4}; \bar{\varepsilon}^{5} = \varepsilon^{5}; \bar{\varepsilon}^{6} = \varepsilon^{6};$$

$$(10)$$

$$A_2(t_2): \overline{\varepsilon}^1 = \varepsilon^5 t_2 + \varepsilon^1; \overline{\varepsilon}^2 = \varepsilon^2; \overline{\varepsilon}^3 = \varepsilon^3; \overline{\varepsilon}^4 = \varepsilon^4; \overline{\varepsilon}^5 = \varepsilon^5; \overline{\varepsilon}^6 = \varepsilon^6; \tag{11}$$

$$A_3(t_3): \bar{\varepsilon}^1 = \varepsilon^1; \bar{\varepsilon}^2 = \varepsilon^2 - \varepsilon^5 t_3; \bar{\varepsilon}^3 = \varepsilon^3; \bar{\varepsilon}^4 = \varepsilon^4; \bar{\varepsilon}^5 = \varepsilon^5; \bar{\varepsilon}^6 = \varepsilon^6;$$
(12)

$$A_4(t_4): \bar{\varepsilon}^1 = \varepsilon^1; \bar{\varepsilon}^2 = \varepsilon^2; \bar{\varepsilon}^3 = \varepsilon^3; \bar{\varepsilon}^4 = \varepsilon^4; \bar{\varepsilon}^5 = \varepsilon^5; \bar{\varepsilon}^6 = \varepsilon^6;$$
(13)

$$A_{5}(t_{5}): \overline{\varepsilon}^{2} = \varepsilon^{2} + t_{5}\varepsilon^{3}; \overline{\varepsilon}^{1} = \varepsilon^{1} - \varepsilon^{2}t_{5} - \frac{t_{5}^{2}}{2}\varepsilon^{3};$$

$$\overline{\varepsilon}^{3} = \varepsilon^{3}; \overline{\varepsilon}^{4} = \varepsilon^{4}; \overline{\varepsilon}^{5} = \varepsilon^{5}; \overline{\varepsilon}^{6} = \varepsilon^{6};$$
(14)

$$A_6(t_6): \bar{\varepsilon}^1 = \varepsilon^1; \bar{\varepsilon}^2 = \varepsilon^2; \bar{\varepsilon}^3 = \varepsilon^3; \bar{\varepsilon}^4 = \varepsilon^4; \bar{\varepsilon}^5 = \varepsilon^5; \bar{\varepsilon}^6 = \varepsilon^6.$$
 (15)

 ε^i -координаты произвольного оператора в алгебре $L_{\scriptscriptstyle 6}$. $\bar{\varepsilon}^i$ -преобразованные координаты.

Оптимальные системы подалгебр

С помощью внутренних автоморфизмов и линейных преобразований операторов (домножения на константы и сложения) найдём элементы оптимальной системы подалгебр, представляющие классы эквивалентности алгебры Ли L_6 .

Найдем оптимальную систему одномерных подалгебр. Координаты операторов зададим в виде:

$$(\alpha^1 \alpha^2 \alpha^3 \alpha^4 \alpha^5 \alpha^6).$$

Рассмотрим следующие случаи:

1) $\alpha^5 \neq 0$, тогда оператор примет вид: $(\alpha^1 \alpha^2 \alpha^3 \alpha^4 1 \alpha^6)$.

При помощи автоморфизмов (11) и (12) подбирая $t_3 = \alpha^2$; $t_2 = -\alpha^1$ получаем $\widetilde{\alpha}^1 = 0$; $\widetilde{\alpha}^2 = 0$. Переобозначив $\widetilde{\alpha}^1 = \alpha^1$; $\widetilde{\alpha}^2 = \alpha^2$ можем упростить координаты, таким образом, оператор примет вид:

$$(0 \quad 0 \quad \alpha^3 \quad \alpha^4 \quad 1 \quad \alpha^6).$$

- 2) $\alpha^5 = 0$, тогда $(\alpha^1 \ \alpha^2 \ \alpha^3 \ \alpha^4 \ 0 \ \alpha^6)$. С помощью автоморфизмов (12),(13),(15) упростить нельзя.
- 2.1) $\alpha^5 = 0$, $\alpha^3 \neq 0 \Rightarrow (\alpha^1 \quad \alpha^2 \quad 1 \quad \alpha^4 \quad 0 \quad \alpha^6)$. Аналогично, при помощи автоморфизма (21) упрощаем координаты, таким образом: $(\alpha^1 \quad 0 \quad 1 \quad \alpha^4 \quad 0 \quad \alpha^6)$.
- 2.2) При $\alpha^5 = \alpha^3 = 0$, $\alpha^2 \neq 0$, тогда $(\alpha^1 \quad \alpha^2 \quad 0 \quad \alpha^4 \quad 0 \quad \alpha^6)$. После упрощения имеет вид: $(0 \quad 1 \quad 0 \quad \alpha^4 \quad 0 \quad \alpha^6)$.

2.3) При
$$\alpha^5 = \alpha^3 = \alpha^2 = 0$$
, тогда $(\alpha^1 \ 0 \ 0 \ \alpha^4 \ 0 \ \alpha^6)$.

Автоморфизмами упростить нельзя, поэтому рассмотрим следующие случаи:

1)
$$\alpha^5 = \alpha^3 = \alpha^2 = 0$$
, $\alpha^6 \neq 0 \Rightarrow (\alpha^1 \ 0 \ 0 \ \alpha^4 \ 0 \ 1)$;

2)
$$\alpha^5 = \alpha^3 = \alpha^2 = \alpha^6 = 0, \alpha^4 \neq 0 \Rightarrow (\alpha^1 \ 0 \ 0 \ 1 \ 0 \ 0);$$

3)
$$\alpha^5 = \alpha^3 = \alpha^2 = \alpha^6 = \alpha^4 = 0, \alpha^1 \neq 0 \Rightarrow (1 \ 0 \ 0 \ 0 \ 0)$$

Оптимальная система θ_1 одномерных подалгебр представлена в таблице №1.

No॒	Базис подалгебры
1	$\alpha^{3}X_{3} + \alpha^{4}X_{4} + X_{5} + X_{6}\alpha^{6}$
2	$\alpha^{1}X_{1} + X_{3} + X_{4}\alpha^{4} + X_{6}\alpha^{6}$
3	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$
4	$\alpha^{1}X_{1} + X_{4}\alpha^{4} + X_{6}$
5	$\alpha^1 X_1 + X_4$
6	X_{1}

Таблица № 1

Теперь найдем оптимальную систему θ_2 двумерных подалгебр. Для этого поочередно выберем базисные векторы одномерных подалгебр и найдем второй приемлемый базисный вектор для двумерной алгебры. Тогда,

1.1) при $\beta^5 = 0$ и упрощая координаты с помощью автоморфизмов векторы примут вид:

$$\begin{pmatrix} \alpha^1 & 0 & 1 & \alpha^4 & 0 & \alpha^6 \\ \beta^1 & \beta^2 & 0 & \beta^4 & 0 & \beta^6 \end{pmatrix}.$$

Проверим условие подалгебры:

$$\begin{cases} H_1 = \alpha^1 X_1 + X_3 + \alpha^4 X_4 + \alpha^6 X_6 \\ H_2 = \beta^1 X_1 + \beta^2 X_2 + \beta^4 X_4 + \beta^6 X_6 \end{cases}.$$

$$\begin{split} [H_1, H_2] = & [\alpha^1 X_1 + X_3 + \alpha^4 X_4 + \alpha^6 X_6, \beta^1 X_1 + \beta^2 X_2 + \beta^4 X_4 + \beta^6 X_6] = > \\ & \alpha^1 [X_1, \beta^1 X_1 + \beta^2 X_2 + \beta^4 X_4 + \beta^6 X_6] + [X_4, \beta^1 X_1 + \beta^2 X_2 + \beta^4 X_4 + \beta^6 X_6] + \alpha^4 [X_4, \beta^1 X_1 + \beta^2 X_2 + \beta^4 X_4 + \beta^6 X_6] + \alpha^6 [X_6, \beta^1 X_1 + \beta^2 X_2 + \beta^4 X_4 + \beta^6 X_6]. \end{split}$$

Таким образом, $[H_1, H_2] = 0 = >$ является группой.

1.2) При
$$\beta^5 \neq 0$$
 $\begin{pmatrix} \alpha^1 & 0 & 1 & \alpha^4 & 0 & \alpha^6 \\ 0 & 0 & 0 & \beta^4 & 1 & \beta^6 \end{pmatrix}$.

Проверим условие подалгебры. Действуя аналогично получаем $[H_1,H_2] = -X_2 \, .$

Условие не выполнено, отсюда следует оно не дает группы Ли, а значит не включаем в оптимальную систему.

Аналогично будем действовать при нахождении остальных подалгебр и проверять условие подалгебр. Тогда

1.3)
$$\begin{pmatrix} \alpha^1 & 0 & 1 & 0 & 0 & \alpha^6 \\ \beta^1 & \beta^2 & 0 & 1 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

1.4)
$$\begin{pmatrix} \alpha^1 & 0 & 1 & \alpha^4 & 0 & \alpha^6 \\ 0 & 1 & 0 & 0 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

1.5)
$$\begin{pmatrix} 0 & 0 & 1 & \alpha^4 & 0 & \alpha^6 \\ 1 & 0 & 0 & 0 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

1.6)
$$\begin{pmatrix} \alpha^1 & 0 & 1 & \alpha^4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

2.1)
$$\begin{pmatrix} 0 & 1 & 0 & \alpha^4 & 0 & \alpha^6 \\ \beta^1 & 0 & \beta^3 & \beta^4 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

2.2)
$$\begin{pmatrix} 0 & 1 & 0 & \alpha^4 & 0 & \alpha^6 \\ 0 & 0 & \beta^3 & \beta^4 & 1 & \beta^6 \end{pmatrix} . [H_1, H_2] = X_1.$$

2.3)
$$\begin{pmatrix} 0 & 1 & 0 & \alpha^4 & 0 & \alpha^6 \\ \beta^1 & 0 & 1 & \beta^4 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

2.4)
$$\begin{pmatrix} 0 & 1 & 0 & \alpha^4 & 0 & \alpha^6 \\ 1 & 0 & 0 & \beta^4 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

2.5)
$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \alpha^6 \\ 0 & 0 & 0 & 1 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

2.6)
$$\begin{pmatrix} 0 & 1 & 0 & \alpha^4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

3.1)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & \alpha^4 & 0 & 1 \\ \beta^1 & 0 & \beta^3 & \beta^4 & 0 & 0 \end{pmatrix} . [H_1, H_2] = 0.$$

3.2)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & \alpha^4 & 0 & 1 \\ 0 & 0 & \beta^3 & \beta^4 & 1 & 0 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

3.3)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & \alpha^4 & 0 & 1 \\ \beta^1 & 0 & 1 & \beta^4 & 0 & 0 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

3.4)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & 0 & 0 & 1 \\ \beta^1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

3.5)
$$\begin{pmatrix} 0 & 0 & 0 & \alpha^4 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

4.1)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & 1 & 0 & 0 \\ \beta^1 & \beta^2 & \beta^3 & 0 & \beta^5 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

4.2)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \beta^3 & 0 & 1 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

4.3)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & 1 & 0 & 0 \\ \beta^1 & 0 & 1 & 0 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

4.4)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

4.5)
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

4.6)
$$\begin{pmatrix} \alpha^1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

5.1)
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \beta^2 & \beta^3 & \beta^4 & \beta^5 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

5.2)
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \beta^3 & \beta^4 & 1 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

5.3)
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & \beta^4 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = 0$.

5.4)
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

6.1)
$$\begin{pmatrix} 0 & 0 & \alpha^3 & \alpha^4 & 1 & \alpha^6 \\ \beta^1 & \beta^2 & \beta^3 & \beta^4 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

6.2)
$$\begin{pmatrix} 0 & 0 & \alpha^3 & \alpha^4 & 1 & \alpha^6 \\ \beta^1 & \beta^2 & 0 & \beta^4 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = -\beta^2 X_1$. Тогда $\beta^2 = 0 \Rightarrow$

$$6.2.1)\begin{pmatrix} 0 & 0 & \alpha^3 & \alpha^4 & 1 & 0 \\ \beta^1 & 0 & 0 & \beta^4 & 0 & 1 \end{pmatrix}, 6.2.2)\begin{pmatrix} 0 & 0 & \alpha^3 & 0 & 1 & \alpha^6 \\ \beta^1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix},$$

$$6.2.3) \begin{pmatrix} 0 & 0 & \alpha^3 & \alpha^4 & 1 & \alpha^6 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

6.3)
$$\begin{pmatrix} 0 & 0 & 0 & \alpha^4 & 1 & \alpha^6 \\ \beta^1 & 0 & 1 & \beta^4 & 0 & \beta^6 \end{pmatrix}$$
. $[H_1, H_2] = X_2$.

6.4)
$$\begin{pmatrix} 0 & 0 & \alpha^3 & \alpha^4 & 1 & \alpha^6 \\ 0 & 1 & 0 & \beta^4 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

6.5)
$$\begin{pmatrix} 0 & 0 & \alpha^3 & \alpha^4 & 1 & \alpha^6 \\ 1 & 0 & 0 & \beta^4 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

6.6)
$$\begin{pmatrix} 0 & 0 & \alpha^3 & 0 & 1 & \alpha^6 \\ 0 & 0 & 0 & 1 & 0 & \beta^6 \end{pmatrix} . [H_1, H_2] = 0.$$

6.7)
$$\begin{pmatrix} 0 & 0 & \alpha^3 & \alpha^4 & 1 & \alpha^6 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} . [H_1, H_2] = 0.$$

No	Баз	ис подалгебры
1.1	$\alpha^1 X_1 + X_3 + X_4 \alpha^4 + X_6 \alpha^6$	$X_1\beta^1 + X_2\beta^2 + X_4\beta^4 + X_6\beta^6$
1.2	$X_1\alpha^1 + X_3 + X_4\alpha^4 + X_6\alpha^6$	$X_4 \beta^4 + X_5 + X_6 \beta^6$
1.3	$X_1\alpha^1 + X_3 + X_6\alpha^6$	$X_1 \beta^1 + X_2 \beta^2 + X_4 + X_6 \beta^6$
1.4	$X_1 \alpha^1 + X_3 + X_4 \alpha^4 + X_6 \alpha^6$	$X_2 + X_6 \beta^6$
1.5	$X_3 + X_4 \alpha^4 + X_6 \alpha^6$	$X_1 + X_6 \beta^6$
1.6	$X_1\alpha^1 + X_3 + X_4\alpha^4$	X_6
2.1	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$	$X_1 \beta^1 + X_3 \beta^3 + X_4 \beta^4 + X_6 \beta^6$
2.2	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$	$X_3\beta^3 + X_4\beta^4 + X_5 + X_6\beta^6$
2.3	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$	$X_1 \beta^1 + X_3 + X_4 \beta^4 + X_6 \beta^6$
2.4	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$	$X_3 + X_4 \beta^4 + X_6 \beta^6$
2.5	$X_2 + X_6 \alpha^6$	$X_4 + X_6 \beta^6$
2.6	$X_2 + X_4 \alpha^4$	X 6
3.1	$X_1\alpha^1 + X_4 \alpha^4 + X_6$	$X_1 \beta^1 + X_3 \beta^3 + X_4 \beta^4$
3.2	$X_1\alpha^1 + X_4\alpha^4 + X_6$	$X_3 \beta^3 + X_4 \beta^4 + X_5$
3.3	$X_1\alpha^1 + X_4 \alpha^4 + X_6$	$X_1 \beta^1 + X_3 + X_4 \beta^4$
3.4	$X_1\alpha^1 + X_6$	$X_1\beta^1 + X_4$
3.5	$X_4 \alpha^4 + X_6$	X_1
4.1	$X_1 \alpha^1 + X_4$	$X_1\beta^1 + X_2\beta^2 + X_3\beta^3 + X_5\beta^5 + X_6\beta^6$
4.2	$X_1 \alpha^1 + X_4$	$X_3\beta^3 + X_5 + X_6\beta^6$
4.3	$X_1 \alpha^1 + X_4$	$X_1 \beta^1 + X_3 + X_6 \beta^6$
4.4	$X_1 \alpha^1 + X_4$	$X_2 + X_6 \beta^6$
4.5	X_4	$X_1 + X_6 \beta^6$

4.6	$X_1 \alpha^1 + X_4$	X 6
5.1	X_1	$X_2\beta^2 + X_3\beta^3 + X_4\beta^4 + X_5\beta^5 + X_6\beta^6$
5.2	X_1	$X_3\beta^3 + X_4\beta^4 + X_5 + X_6\beta^6$
5.3	X_1	$X_3 + X_4 \beta^4 + X_6 \beta^6$
5.4	X_{1}	$X_4 + X_6 \beta^6$
5.5	X_1	X_6
6.1	$X_3\alpha^3 + X_4\alpha^4 + X_5 + X_6\alpha^6$	$X_1\beta^1 + X_2\beta^2 + X_3\beta^3 + X_4\beta^4 + X_6\beta^6$
6.2.	$X_3 \alpha^3 + X_4 \alpha^4 + X_5 + X_6 \alpha^6$	$X_1 \beta^1 + X_4 \beta^4 + X_6$
1		
6.2.	$X_3\alpha^3 + X_5 + X_6\alpha^6$	$X_1\beta^1 + X_4$
2		
6.2.	$X_3\alpha^3 + X_4\alpha^4 + X_5 + X_6\alpha^6$	X_1
3		
6.3	$X_4\alpha^4 + X_5 + X_6\alpha^6$	$X_1 \beta^1 + X_3 + X_4 \beta^4 + X_6 \beta^6$
6.4	$X_3\alpha^3 + X_4\alpha^4 + X_5 + X_6\alpha^6$	$X_2 + X_4 \beta^4 + X_6 \beta^6$
6.5	$X_3\alpha^3 + X_4\alpha^4 + X_5 + X_6\alpha^6$	$X_1 + X_4 \beta^4 + X_6 \beta^6$
6.6	$X_3\alpha^3 + X_5 + X_6\alpha^6$	$X_4 + X_6 \beta^6$
6.7	$X_3\alpha^3 + X_4\alpha^4 + X_5$	X_6

Таблица № 2

Найдем оптимальную систему θ_3 трехмерных подалгебр.

1.1)
$$\begin{pmatrix} \alpha^{1} & 0 & 1 & \alpha^{4} & 0 & \alpha^{6} \\ \beta^{1} & \beta^{2} & 0 & \beta^{4} & 0 & \beta^{6} \\ \gamma^{1} & \gamma^{2} & 0 & \gamma^{4} & \gamma^{5} & \gamma^{6} \end{pmatrix}$$

Проверим условие подалгебры:

1.2)
$$\begin{pmatrix} \alpha^1 & 0 & 1 & \alpha^4 & 0 & \alpha^6 \\ 0 & 0 & 0 & \beta^4 & 1 & \beta^6 \\ \gamma^1 & \gamma^2 & 0 & \gamma^4 & 0 & \gamma^6 \end{pmatrix}$$

$$[H_2H_3] = -\gamma^2 X_1$$
.

$$[A_{23}\alpha^{1} + C_{23}\gamma^{1} - \gamma^{2})X_{1} + (C_{23}\gamma^{2})X_{2} + A_{23}X_{3} + (A_{23}\alpha^{4} + B_{23}\beta^{4} + C_{23}\gamma^{4})X_{4} + B_{23}X_{5} + (A_{23}\alpha^{6} + B_{23}\beta^{6} + C_{23}\gamma^{6})X_{6}$$

Тогда запишем систему:

$${A_{23} = 0; B_{23} = 0; C_{23}\gamma^{1} + \gamma^{2} = 0 C_{23}\gamma^{2} = 0; C_{23}\gamma^{4} = 0; C_{23}\gamma^{5} = 0}$$

Полагая $C_{23} = 0$ следует, что $\gamma^2 = 0$;

Далее, поступая аналогичным образом, проверяя условие подалгебр получаем оптимальную систему трёхмерных подалгебр (см. табл. №3).

$N_{\underline{0}}$		Базис подалгебры	
1.1.1	$\alpha^1 X_1 + X_3 + X_4 \alpha^4$	$X_1 \beta^1 + X_2 \beta^2 + X_4 \beta^4$	$X_1 \gamma^1 + X_2 \gamma^2 + X_4 \gamma^4 + X_6$
1.1.2	$\alpha^1 X_1 + X_3 + X_6 \alpha^6$	$X_1 \beta^1 + X_2 \beta^2 + X_6 \beta^6$	$X_1 \gamma^1 + X_2 \gamma^2 + X_4$
1.1.3	$\alpha^{1}X_{1} + X_{3} + X_{4}\alpha^{4} + X_{6}\alpha^{6}$	$X_1 \beta^1 + X_4 \beta^4 + X_6 \beta^6$	$X_1 \gamma^1 + X_2$
1.1.4	$X_3 + X_4 \alpha^4 + X_6 \alpha^6$	$X_2 \beta^2 + X_4 \beta^4 + X_6 \beta^6$	X_1
1.2.1	$X_1\alpha^1 + X_3 + X_4\alpha^4$	$X_4 \beta^4 + X_5$	$X_1 \gamma^1 + X_4 \gamma^4 + X_6$
1.2.2	$X_1\alpha^1 + X_3 + X_6\alpha^6$	$X_5 + X_6 \beta^6$	$X_1 \gamma^1 + X_4$
1.2.3	$X_3 + X_4 \alpha^4 + X_6 \alpha^6$	$X_4 \beta^4 + X_5 + X_6 \beta^6$	X_1
1.3.1	$X_1\alpha^1 + X_3$	$X_1\beta^1 + X_2\beta^2 + X_4$	$X_1 \gamma^1 + X_2 \gamma^2 + X_6$
1.3.2	$X_1\alpha^1 + X_3 + X_6\alpha^6$	$X_1 \beta^1 + X_4 + X_6 \beta^6$	$X_1 \gamma^1 + X_2$
1.3.3	$X_3 + X_6 \alpha^6$	$X_2\beta^2 + X_4 + X_6\beta^6$	X_1
1.4.1	$X_1\alpha^1 + X_3 + X_4\alpha^4$	X_{2}	$X_1 \gamma^1 + X_4 \gamma^4 + X_6$
1.4.2	$X_1\alpha^1 + X_3 + X_6\alpha^6$	$X_2 + X_6 \beta^6$	$X_1 \gamma^1 + X_4$
1.4.3	$X_3 + X_4 \alpha^4 + X_6 \alpha^6$	$X_2 + X_6 \beta^6$	X_1
1.5.1	$X_3 + X_4 \alpha^4$	\boldsymbol{X}_1	$X_2 \gamma^2 + X_4 \gamma^4 + X_6$
1.5.2	$X_3 + X_6 \alpha^6$	$X_1 + X_6 \beta^6$	$X_2 \gamma^2 + X_4$
1.5.3	$X_3 + X_4 \alpha^4 + X_6 \alpha^6$	$X_1 + X_6 \beta^6$	X_2
1.6.1	$X_1\alpha^1 + X_3$	X_6	$X_1 \gamma^1 + X_2 \gamma^2 + X_4$
1.6.2	$X_1\alpha^1 + X_3 + X_4\alpha^4$	X_6	$X_1 \gamma^1 + X_2$
1.6.3	$X_3 + X_4 \alpha^4$	X_6	X_{1}
2.1.1	$X_2 + X_4 \alpha^4$	$X_3 \beta^3 + X_4 \beta^4 + X_5$	$X_1 \gamma^1 + X_4 \gamma^4 + X_6$
2.1.2	$X_2 + X_6 \alpha^6$	$X_3 \beta^3 + X_5 + X_6 \beta^6$	$X_1 \gamma^1 + X_4$
2.1.3	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$	$X_3 \beta^3 + X_4 \beta^4 + X_5 + X_6 \beta^6$	X_1
2.2.1	$X_2 + X_4 \alpha^4$	$X_1 \beta^1 + X_3 \beta^3 + X_4 \beta^4 + X_5 \beta^5$	$X_1 \gamma^1 + X_4 \gamma^4 + X_5 \gamma^5 + X_6$
2.2.2	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$	$X_1 \beta^1 + X_3 \beta^3 + X_4 \beta^4 + X_6 \beta^6$	$X_1 \gamma^1 + X_4 \gamma^4 + X_5$
2.2.3	$X_2 + X_6 \alpha^6$	$X_1 \beta^1 + X_3 \beta^3 + X_5 \beta^5 + X_6 \beta^6$	$X_1 \gamma^1 + X_4$
2.2.4	$X_2 + X_4 \alpha^4 + X_6 \alpha^6$	$X_3\beta^3 + X_4\beta^4 + X_5\beta^5 + X_6\beta^6$	X_{1}
2.3.1	$X_2 + X_4 \alpha^4$	$X_1\beta^1 + X_3 + X_4\beta^4$	$X_1 \gamma^1 + X_4 \gamma^4 + X_6$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.3.2	$X_2 + X_6 \alpha^6$	$X_1 \beta^1 + X_3 + X_6 \beta^6$	$X_1 \gamma^1 + X_4$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5.2	$X_2 + X_6 \alpha^6$		$X_1 \gamma^1 + X_3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$X_2 + X_6 \alpha^6$	$X_4 + X_6 \beta^6$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.6.1		X_6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.6.2	$X_2 + X_4 \alpha^4$	X_6	X_{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.1.1	$X_1\alpha^1 + X_6$	$X_3\beta^3 + X_5$	$X_1 \gamma^1 + X_3 \gamma^3 + X_4$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.1.2	$X_1\alpha^1 + X_4\alpha^4 + X_6$	$X_4 \beta^4 + X_5$	$X_1 \gamma^1 + X_3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.1.3	$X_4\alpha^4 + X_6$	$X_3\beta^3 + X_4\beta^4 + X_5$	X_1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2.1	$X_1\alpha^1 + X_6$	$X_1\beta^1 + X_3$	$X_1 \gamma^1 + X_2 \gamma^2 + X_4$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2.2	$X_1\alpha^1 + X_4 \alpha^4 + X_6$	$X_1\beta^1 + X_3 + X_4\beta^4$	$X_1 \gamma^1 + X_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2.3	$X_4 \alpha^4 + X_6$	$X_3 + X_4 \beta^4$	X_1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.1.1	$X_1\alpha^1 + X_4$	$X_1 \beta^1 + X_2 \beta^2 + X_6 \beta^6$	$X_1 \gamma^1 + X_2 \gamma^2 + X_3 + X_6 \gamma^6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.1.2	$X_1\alpha^1 + X_4$	$X_1 \beta^1 + X_2 \beta^2 + X_6 \beta^6$	$X_1 \gamma^1 + X_2 \gamma^2 + X_6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.1.3	$X_1\alpha^1 + X_4$	$X_1 \beta^1 + X_3 \beta^3 + X_6 \beta^6$	$X_1 \gamma^1 + X_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.1.4	$X_{_4}$	$X_3\beta^3 + X_6\beta^6$	X_{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2.1	$X_1\alpha^1 + X_4$	$X_3\beta^3 + X_5$	$X_1 \gamma^1 + X_3 \gamma^3 + X_6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2.2	$X_1\alpha^1 + X_4$	$X_5 + X_6 \beta^6$	$X_1 \gamma^1 + X_3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2.3	X_4	$X_3 \beta^3 + X_5 + X_6 \beta^6$	X_{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3.1	$X_1\alpha^1 + X_4$	X_2	$X_1 \gamma^1 + X_3 \gamma^3 + X_6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3.2	$X_1\alpha^1 + X_4$	$X_2 + X_6 \beta^6$	$X_1 \gamma^1 + X_3$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3.3	X_4	$X_2 + X_6 \beta^6$	X_{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.1.1	X_{1}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.1.2	X_{1}	$X_3\beta^3 + X_4\beta^4 + X_5\beta^5 + X_6\beta^6$	$X_2 + X_4 \gamma^4 + X_6 \gamma^6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.1.3	X_{1}	$X_2\beta^2 + X_3\beta^3 + X_5\beta^5 + X_6\beta^6$	$X_4 + X_6 \gamma^6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.1.4	X_1	$X_2\beta^2 + X_3\beta^3 + X_4\beta^4 + X_5\beta^5$	X_6
5.2.2 X_1 $X_3\beta^3 + X_5 + X_6\beta^6$ $X_4 + X_6\gamma^6$ 5.2.3 X_1 $X_3\beta^3 + X_4\beta^4 + X_5$ X_6	5.2.1	X_1	$X_4 \beta^4 + X_5 + X_6 \beta^6$	$X_3 + X_4 \gamma^4 + X_6 \gamma^6$
5.2.3 X_1 $X_3\beta^3 + X_4\beta^4 + X_5$ X_6	5.2.2	X_{1}	$X_3\beta^3 + X_5 + X_6\beta^6$	
	5.2.3	X_1	$X_3\beta^3 + X_4\beta^4 + X_5$	
	5.3.1	X_1		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ X ₄ 3 + X ₆
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ X ₆
6.1.3 $X_3\alpha^3 + X_4\alpha^4 + X_5$ $X_4\beta^4 + X_6$ X_1 6.2.1 $X_4\alpha^4 + X_5$ $X_1\beta^1 + X_3 + X_4\beta^4$ $X_1\gamma^1 + X_4\gamma^4 - X_5$ 6.2.2 $X_5 + X_6\alpha^6$ $X_1\beta^1 + X_3 + X_6\beta^6$ $X_1\gamma^1 + X_4\gamma^4 - X_5$	+ X ₆
6.2.1 $X_4 \alpha^4 + X_5$ $X_1 \beta^1 + X_3 + X_4 \beta^4$ $X_1 \gamma^1 + X_4 \gamma^4 - 6.2.2$ $X_5 + X_6 \alpha^6$ $X_1 \beta^1 + X_3 + X_6 \beta^6$ $X_1 \gamma^1 + X_4 \gamma^4 - 6.2.2$	-
6.2.2 $X_5 + X_6 \alpha^6$ $X_1 \beta^1 + X_3 + X_6 \beta^6$ $X_1 \gamma^1 + X_4$	-
	ţ
6.23 $Y \alpha^4 + Y + Y \alpha^6$ $Y + Y R^4 + Y R^6$ Y	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
6.3.1 $X_4 \alpha^4 + X_5 + X_6 \alpha^6$ $X_2 + X_6 \beta^6$ $X_1 \gamma^1 + X_3$	3
6.3.2 $X_3 \alpha^3 + X_4 \alpha^4 + X_5 + X_6 \alpha^6$ $X_2 + X_4 \beta^4 + X_6 \beta^6$ X_1	
6.4.1 $X_3 \alpha^3 + X_5 + X_6 \alpha^6$ $X_2 + X_6 \beta^6$ $X_1 \gamma^1 + X_4 + X_6 \gamma^6$	$X_6 \gamma^6$
6.4.2 $X_3 \alpha^3 + X_4 \alpha^4 + X_5$ $X_2 + X_4 \beta^4$ $X_1 \gamma^1 + X_6$	5
6.4.3 $X_3 \alpha^3 + X_4 \alpha^4 + X_5 + X_6 \alpha^6$ $X_2 + X_4 \beta^4 + X_6 \beta^6$ X_1	
6.5.1 $X_3\alpha^3 + X_5 + X_6\alpha^6$ $X_1 + X_6\beta^6$ $X_2\gamma^2 + X_4 + X_5$	$X_6 \gamma^6$
6.5.2 $X_3 \alpha^3 + X_4 \alpha^4 + X_5$ $X_1 + X_4 \beta^4$ $X_2 \gamma^2 + X_6$	6
$6.5.3 X_3 \alpha^3 + X_4 \alpha^4 + X_5 + X_6 \alpha^6 \qquad X_1 + X_4 \beta^4 + X_6 \beta^6 \qquad X_2$	
6.6.1 $X_3 \alpha^3 + X_5$ X_4 $X_1 \gamma^1 + X_2 \gamma^2 -$	$+X_6$
6.6.2 $X_3 \alpha^3 + X_5 + X_6 \alpha^6$ $X_4 + X_6 \beta^6$ $X_1 \gamma^1 + X_2$	2
6.6.3 $X_3 \alpha^3 + X_5 + X_6 \alpha^6$ $X_4 + X_6 \beta^6$ X_1	
6.7.1 $X_3 \alpha^3 + X_5$ X_6 $X_1 \gamma^1 + X_2 \gamma^2 + X_5$	$4 + X_6 \gamma^6$
6.7.2 $X_3\alpha^3 + X_4\alpha^4 + X_5$ 0 $X_1\gamma^1 + X_2\gamma^2 -$	$+X_6$
6.7.3 $X_3 \alpha^3 + X_4 \alpha^4 + X_5$ X_6 $X_1 \gamma^1 + X_2$	Ü
$6.7.4 X_3 \alpha^3 + X_4 \alpha^4 + X_5 X_6 X_1$	

Таблица № 3

Инвариантное решение

Рассматривая подалгебру 3.2.1 из таблицы №3, найдём инварианты соответствующей ей группы и построим инвариантное решение ранга 1.

Универсальный инвариант имеет вид:

$$I = \left\{ \frac{z\gamma_2 - x}{\gamma_2}, ue^{\frac{(y\beta_1 - t)\gamma_2 + \gamma_1 x}{\gamma_2 \alpha_1}} \right\}.$$

Тогда решение можно представить в виде:

$$u(t,x,y,z) = e^{\frac{-(y\beta_1 - t)\gamma_2 - \gamma_1 x}{\alpha_1 \gamma_2}} f(\rho), \quad \rho = \frac{z\gamma_2 - x}{\gamma_2}$$
(16)

После подстановки в исходное уравнение (4) получаем факторуравнение:

$$(\alpha_1^3 + \alpha_1^2 + \alpha_1^3 \gamma_2^2) f_{\rho,\rho} + \gamma_1 (2\alpha_1^2 + 2\alpha_1) f_{\rho} + ((\alpha_1 \beta_1^2 - \alpha_1^2 + \beta_1^2) \gamma_2^2 + (\alpha_1 + 1) \gamma_1^2) f = 0$$
 (17)

После подстановки в (16) и решения этого выражения при константах $\alpha_1 = 1, \gamma_1 = 0, \beta_1 = 0, \gamma_2 = 1$ инвариантное решение примет вид:

$$u(t,x,y,z) = e^{t} \left(e^{\frac{1}{3}\sqrt{3}(z-x)} + e^{-\frac{1}{3}\sqrt{3}(z-x)} \right)$$
 (18)

Заключение

В ходе проведенной работы для исследуемого уравнения была найдена основная допускаемая группа Ли, построена алгебра этих операторов и оптимальная система одномерных, двухмерных и трехмерных подалгебр. Построено инвариантное решение ранга 1, которое позволяет сводить исходное уравнение к обычному дифференциальному уравнению.

Список литературы

- Баренблатт Г.И., Желтое Ю.П., Кочина И.Н. Об основных представлениях теории фильтрации в трещиноватых средах // Приклад, математика и механика. 1960. Т. 24, 5. С. 58-73.
- 2. Hallaire M. On a theory of moisture-transfer // Inst. Rech. Agronom. 1964. 3. C. 60-72.
- 3. Баренблатт Г.И., Ентов В.М., Рыжик В.М. Теория нестационарной фильтрации жидкости и газа. М.: Недра, 1972. 288 с.
- 4. В.Е. Фёдоров, А.В. Панов, А.С. Карабаева «Симметрии одного класса квазилинейных уравнений псевдопараболического типа. Инвариантные решения» 91-97с.
- 5. Умаров Х.Г. Явный вид решения задачи Коши для уравнения Баренблатта—Желтова—Кочиной // ПММ. 2014. Т. 78. Вып. 2. С. 211—224.
- 6. Овсянников Л.В. Групповой анализ дифференциальных уравнений // М.: Наука, 1978. 339 с.