МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ НАУК О ЗЕМЛЕ

Кафедра геоэкологии и природопользования

Заведующий кафедрой (доктор биологических наук, доцент) Синдирева Анна Владимировна

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

магистра

ОЦЕНКА ЗАГРЯЗНЕНИЯ ГОРОДСКОЙ ВОЗДУШНОЙ СРЕДЫ ВЫБРОСАМИ АВТОТРАНСПОРТА (НА ПРИМЕРЕ ГОРОДОВ НАДЫМ И ТЮМЕНЬ)

> Код и наименование направления подготовки Магистерская программа «05.04.06» (Геоэкология нефтедобывающих регионов)

Выполнил работу студент 2 курса очной формы обучения

Терентьев Глеб Робертович

Научный руководитель

(доктор биологических

наук,

Соромотин Андрей Владимирович

npoфeccop)

Рецензент

(доктор химических наук., заведующий Кремлева Татьяна Анатольевна

кафедрой органической экологической химии ТюмГУ)

Тюмень 2020

u

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР	6
1.1 АВТОМОБИЛЬНЫЙ ТРАНСПОРТ КАК ИСТОЧНИК ЗАГРЯЗНЕНИЯ	F
АТМОСФЕРНОГО ВОЗДУХА	6
1.2 СОСТАВ ВЫХЛОПНЫХ ГАЗОВ ОТ АВТОМОБИЛЬНОГО ТРАНСП	OPTA
	7
1.3 КАТЕГОРИИ АВТОТРАНСПОРТНЫХ СРЕДСТВ	9
1.4 ФАКТОРЫ ОТРИЦАТЕЛЬНОГО ВЛИЯНИЯ АВТОМОБИЛЬНОГО	
ТРАНСПОРТА НА АТМОСФЕРНЫЙ ВОЗДУХ	10
1.5 ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ АВТОМОБИЛЬНЫХ ВЫБРО	ЭСОВ
В СЕВЕРНЫХ ГОРОДАХ	12
1.6 ВЫВОДЫ	15
ГЛАВА 2 ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОРОДО	В
ТЮМЕНЬ И НАДЫМ	17
2.1 ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОРОДА ТЮМ	ЕНЬ
	17
2.1.1 Географическое положение города Тюмень	17
2.1.2 Геолого-геоморфологические условия города Тюмень	19
2.1.3 Климатическая характеристика города Тюмень	20
2.1.4 Гидрография	24
2.2. ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОРОДА НАД	ЫМ25
2.2.1 Географическое положение города Надым	25
2.2.2 Геолого-геоморфологические условия города Надым	26
2.2.4 Климатическая характеристика города Надым	26
2.2.5 Гидрография	29
2.3 ВЫВОДЫ	30
ГЛАВА 3 МАТЕРИАЛЫ И МЕТОДЫ	31

3.1 ОПРЕДЕЛЕНИЕ АВТОМОБИЛЬНЫХ ВЫБРОСОВ В ГОРОДАХ	
ТЮМЕНЬ И НАДЫМ РАСЧЕТНЫМ МЕТОДОМ	31
3.2 НОВЫЙ МЕТОД ОЦЕНКИ РАСПРЕДЕЛЕНИЯ АВТОМОБИЛЬНОГО	
ТРАНСПОРТА В ЧЕРТЕ ГОРОДА С ИСПОЛЬЗОВАНИЕМ	
ГЕОИНФОРМАЦИОННЫХ СИСТЕМ И ДИСТАНЦИОННОГО	
ЗОНДИРОВАНИЯ ЗЕМЛИ	37
3.3 ВЫВОДЫ	42
ГЛАВА 4 КАЧЕСТВЕННОЕ И КОЛИЧЕСТВЕННОЕ ВОЗДЕЙСТВИЕ	
АВТОМОБИЛЬНЫХ ВЫБРОСОВ НА АТМОСФЕРНЫЙ ВОЗДУХ ГОРОД	OB
ТЮМЕНЬ И НАДЫМ	43
4.1 РЕЗУЛЬТАТЫ РАСЧЕТА АВТОМОБИЛЬНЫХ ВЫБРОСОВ	43
4.2. СОЗДАНИЕ КАРТ ПЛОТНОСТЕЙ АВТОМОБИЛЕЙ ПО ГОРОДАМ	
ТЮМЕНЬ И НАДЫМ	48
4.3 ВЫВОДЫ	50
ЗАКЛЮЧЕНИЕ	52
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	54
ПРИЛОЖЕНИЯ 1-15	57

ВВЕДЕНИЕ

Актуальность. Проблема экологического состояния городов на разных географических широтах; загрязнение автотранспортом атмосферного воздуха становится серьезной опасностью – приводит к ухудшению его качества.

На распространение атмосферных загрязнений в урбанизированной среде влияют климатические условия городов и антропогенные изменения.

Автомобильный транспорт имеет роль в социальном и экономическом развитии города Тюмень, являясь главным источником загрязнения окружающей среды и даже перекрывает выбросы от промышленных предприятий (увеличение площади города, пробки на автомобильных улицах, рост автопарка, длительное время работа сигнала светофора и другое).

Исследование воздействия автотранспорта на состояния атмосферного воздуха в приполярном городе Надым является малоизученным вопросом.

Научный интерес к северному городу на примере Надыма и городу Тюмени, расположенного в подтаежной зоне, позволяет увидеть точки негативного воздействия автотранспорта на атмосферный воздух.

Объект исследования: атмосферный воздух городов Тюмень и Надым.

Предмет исследования: особенности воздействия автотранспорта на атмосферный воздух городов Тюмень и Надым.

Цель работы: определить специфику формирования загрязнения городской воздушной среды в условиях городов Тюмень и Надым автотранспортом.

Для достижения поставленной цели сформулированы следующие задачи:

- -Выполнить анализ литературных источников по проблеме исследования;
- -Выявить физико-географическое особенности городов Тюмень и Надым;
- -Изучить методы оценки загрязнения атмосферного воздуха автотранспортом;

-Определить качественное и количественное воздействие автомобильных выбросов на атмосферный воздух городов Тюмень и Надым.

Положения, выдвигаемые на защиту:

- 1. Максимальное атмосферное загрязнение от автотранспорта в городе Тюмени в зимний период образуется на пересечениях автомагистралей.
- 2. В городе Надыме в зимний период основное загрязнение формируется в замкнутых дворах многоэтажной жилой застройки.

Методы исследования: В исследовании используются данные, полученные в полевых видах работ, статистические методы обработки информации. По каждому исследованию найдены и созданы картографические материалы (картасхемы по учету автомобильного трафика городов Тюмень и Надым, карты плотности автомобилей городов Тюмень и Надым) рассчитаны теоретические значения выбросов (построены таблицы по автомобильным выбросам в исследуемых перекрестках городов, сводные таблицы максимально разовых выбросов за зимний период в 2019 и 2020 годах).

Методологию диссертационного исследования составили подходы, концепции, методы математической статистики и других математических инструментариев. В работе также применен сравнительный метод.

Краткая характеристика использованных источников: Исследовательская работа основана на изучении научной (научные статьи, диссертационные работы) и учебной литературы, интернет-источников, фотоматериалов, картографических источников. В работе также использованы материалы, полученные самостоятельно и коллективно в ходе научных исследований.

Апробация результатов исследования: Апробация результатов исследований состоялась в 2019 году в ходе ежегодной международной конференции «Антропогенная трансформация природной среды», в 2020 году на официальный сайт университета ТюмГУ опубликована статья о новом методе исследования городов, созданного во время написания диссертации.

Научная новизна исследования: впервые проведено исследование, в ходе которого была создана и применена методика по изучению плотности автомобильных транспортных средств на квадратах, площадь каждого которого составляет 10000 м². В качестве примеров для исследования выбраны города Тюмень и Надым.

ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 АВТОМОБИЛЬНЫЙ ТРАНСПОРТ КАК ИСТОЧНИК ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА

Первым этапом классического сравнительного анализа по двум однотипным объектам является анализ имеющихся данных, предоставленных отечественными исследователями.

Это общий анализ по показателям загрязнения воздушной среды продуктами автомобильного транспорта, анализ источников по составу выхлопных газов от автомобильного транспорта, анализ по категориям автотранспортных средств и анализ источников по факторам отрицательного влияния автомобильного транспорта на атмосферный воздух.

Вторым и существенным этапом подготовки к сравнительному анализу по двум однотипным объектам стал анализ источников, рассматривающих особенности распространения автомобильных выбросов в северных городах.

Первый ряд исследователей по общим данным - Литвинова, Порядин, Протасова - предоставляют ценные статистические данные по исследуемой теме, составляя базу для решения вопроса во всей его полноте.

Исследователь Литвинова отмечает рост уровня вредного воздействия автотранспорта на окружающую среду, с начала 70-х годов возросший с отметки 13% доли загрязнений, вносимых в атмосферу автомобильным транспортом, до 50% в настоящее время.

Литвинова также отмечает тенденцию дальнейшего роста уровня загрязнений. Она говорит о доли автомобильных выбросов в промышленных и крупных городах, которая составляет более 60% - это создает серьезную экологическую проблему, сопровождающую урбанизацию [Литвинова, 2016].

Главным недостатком двигателя внутреннего сгорания, который в результате массового распространения автомобильного транспорта занял лидирующее положение, стал фактор загрязнения окружающей среды

выхлопными газами. Доля вредных веществ, поступающих в атмосферу с отработанными газами автомобильных двигателей, составляет до 63% от общего загрязнения окружающей среды [Литвинова, 2016].

1.2 СОСТАВ ВЫХЛОПНЫХ ГАЗОВ ОТ АВТОМОБИЛЬНОГО ТРАНСПОРТА

Выхлопные газы — это отработанное топливо (бензин, дизель или газ), являющееся продуктом не полностью сгоревшего окислившегося углеводородов [По данным http://turbolider.com].

Анализом воздействия на окружающую среду занимался Новиков Ю.В. в своем учебнике «Экология, окружающая среда и человек» он поясняет о ежегодном сжигании 2 млрд. т нефтяного топлива [Новиков, 2005].

Другов Ю.С в книге «Экологический анализ нефти и нефтепродуктов» говорит о наличии в выхлопных газах продуктов неполного сгорания топлива, таких как ацетилен, олефины и карбонатные соединения, поясняет зависимость количества летучих органических соединений в выхлопных газах от условий работы двигателя [Другов, 2000].

Автор учебника «Экология транспорта» Павлова Е.И. приводит данные о получении топлива для транспортных средств из нефти в нашей стране. Он отмечает о наличии химических элементов органического происхождения: углерод, водород, кислород, азот и сера.

Павлова Е.И. выделяет 8 групп загрязняющих веществ, входящих в выхлопные газы.

Первая группа веществ — нетоксичные вещества. К ним относятся: азот, кислород, водород, водяной пар, углекислый газ.

Вторая группа веществ: угарный газ — продукт неполного сгорания автомобильного топлива, он не имеет цвета и запаха. В кислороде и на воздухе оксид углерода горит голубоватым пламенем, выделяя много теплоты и превращаясь в углекислый газ [Павлова, 2000].

В состав третьей группы входят оксиды и диоксиды азота - образуются в камере сгорания двигателе внутреннего сгорания при высоких температурах и давлении. Оксид азота — это бесцветный газ, мало растворим в воде. При стандартных условиях основной оксид азота превращается в кислотный оксид, имеющий запах. Он опасен при техническом обслуживании транспорта.

Вещества этой группы принимают участие в образования фотохимического смога [Павлова, 2000].

К четвертой группе относятся углеводороды, образующиеся в результате неполного сгорания топлива в двигателе.

В приложении 1 приведен перечень летучих углеводородов, обнаруженные в воздухе городов, подтверждая тем самым, загрязненность воздуха автомобильными выхлопными газами (Прил. 1).

Несгоревшие углеводороды являются одной из причин появления белого или голубого дыма, образующиеся при запаздывании воспламенения рабочей смеси в двигателе или при пониженных температурах в камере сгорания. Органические соединения принимают участие в формировании фотохимического смога.

В пятую группу входят альдегиды — это класс органических соединений, имеет связь с углеводородным радикалом. В большом количестве они образуются в режиме холостого хода, при невысоких температурах работы двигателя.

Формальдегид — это бесцветный газ, имеет неприятный запах, хорошо растворим в воде, выделяется у автомобилей, оснащенных дизельными двигателями.

К шестой группе относят дисперсные частицы, а также сажу. Сажа — это аморфный углерод черного цвета, как и все выше рассмотренные вещества, является продуктом неполного сгорания автомобильного топлива. Павлова отмечает, что сажа способна ухудшать видимость на дороге.

В предпоследней группе Павлова выделила группу, состоящую из соединений серы - это сернистый ангидрид, сероводород. Значительное содержание серы присутствует в дизельном топливе.

К последней группе относят соединения свинца, который встречался в этилированном бензине, обладающим высоким октановым числом [Павлова, 2000]. В нашей стране использование этилированного бензина запрещено с 1 июля 2003 года.

1.3 КАТЕГОРИИ АВТОТРАНСПОРТНЫХ СРЕДСТВ

Согласно технического регламента "О безопасности колесных транспортных средств" выделяют следующие интересующие 2 категории: категория М и категория N.

К категории М относятся такие транспортные средства, которые имеют больше четырех колес используются для перевозки пассажиров:

Категория М1 - легковые автомобили, автобусы, троллейбусы.

Категория M2 - Транспортные средства, используются для перевозки пассажиров, имеющие более восьми мест для сидения, допустимая максимальная масса которых не превышает 5 тонн.

Категория М3 - Транспортные средства, используются для перевозки пассажиров, имеющие более восьми мест для сидения, технически допустимая максимальная масса более 5 тонн.

Транспортные средства категорий M2 и M3 вместимостью не более 22 пассажиров помимо водителя, подразделяются на класс A - для перевозки стоящих и сидящих пассажиров, и класс B - для перевозки только сидящих пассажиров.

Категория N – к ним относятся грузовые автомобили и их шасси:

Категория N1 - Транспортные средства, предназначенные для перевозки грузов, имеют допустимую максимальную массу не более 3,5 тонн.

Категория N2 - Транспортные средства, предназначенные для перевозки грузов, имеют допустимую максимальную массу свыше 3,5 тонн, но не более 12 тонн.

Категория N3 - Транспортные средства, предназначенные для перевозки грузов, имеют допустимую максимальную массу более 12 тонн [О безопасности колесных транспортных средств].

1.4 ФАКТОРЫ ОТРИЦАТЕЛЬНОГО ВЛИЯНИЯ АВТОМОБИЛЬНОГО ТРАНСПОРТА НА АТМОСФЕРНЫЙ ВОЗДУХ

Автомобильный транспорт в отличие от других источников загрязнения имеет ряд особенностей, негативно влияющих локально.

К факторам такого влияния следует отнести: наличие светофоров с долгим циклом работы, наличие пробок в утреннее и вечернее время, прогревание автомобиля в холодный период, разгон и торможение, холостой ход, манера езды за рулем автотранспортного средства, особенности правил дорожного движения, устаревший автопарк, несвоевременное проведение технического обслуживания, некачественное топливо, неполное сгорание топлива, поднятие твердых частиц с пылью шинами автомобиля.

Дорожно-уличная сеть — выполняет роль транспортных коммуникаций, она может быть представлена как случайная функция скорости, уклонов и состояния дорожного покрытия, частоты и продолжительности остановок, количества и продолжительности циклов разгона и замедления.

Статистика показывает, что в России каждый день ездит по автомагистралям около 125000 автомобилей.

Численность автотранспорта на крупных магистралях городов превышает 40 тысяч автомобилей в сутки, стремительно это число увеличивается. Холостой ход занимает 67% общего баланса времени.

При разгонах и движении с установившейся скоростью автомобилей образуется максимальная масса загрязняющих веществ, доля по окислам азота и окиси углерода составляет 85%.

При торможении автомобиля выброс окислов азота сведен до нуля.

Повышение эффективности автомобильного движения с 400 до 1200 автомобилей в час на автомобильных магистралях увеличивает содержание окиси углерода в атмосфере в 3 раза.

Ерохов отмечает, что максимальная концентрация угарного газа в крупных городах в будние дни отмечается дважды в утреннее и вечернее время, а в выходные и праздничные дни - только вечером [Ерохов, 2010].

Пониженная температура окружающего воздуха оказывает отрицательное воздействие на двигатель не только в период пуска и послепускового прогрева, но и в начальный период движения. Это обусловлено с пониженной температурой двигателя в период пуска и послепускового прогрева и во время начала движения. При температуре охлаждающей жидкости 40°C темпы изнашивания гильз блока цилиндров возрастают в 4 раза, а при температуре 50°C в 2 раза по сравнению с нормальными температурными условиями (70-85°C).

Эксплуатация автомобилей при отрицательных температурах, в зимний период связана с неполнотой сгорания, более длительной работой двигателя на пониженных и неустановившихся режимах и дополнительными затратами топлива на прогрев двигателя; повышением сопротивления в агрегатах трансмиссии из-за загустевания масел; увеличением сопротивления вращения колес при движении по зимней дороге и аэродинамического сопротивления. Повышенный расход топлива связан с прогревом автомобиля и шин после его длительной стоянки на открытой площадке при отрицательной температуре воздуха.

Ээксплуатационные нормы расхода топлива зимой в зависимости от климатического района увеличиваются в среднем на 10%.

Температура окружающей среды влияет на вязкость и плотность топлива, работу фильтрующих элементов. Топливо с большой вязкостью догорает на такте расширения, что ухудшает экономичность двигателя [Агеев, 2015].

1.5 ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ АВТОМОБИЛЬНЫХ ВЫБРОСОВ В СЕВЕРНЫХ ГОРОДАХ

Проблема загрязненного воздуха города нуждается в поисках решения исследуемого вопроса не только в крупных городах центральной части России, в первую очередь - в городах Крайнего Севера.

Наибольшей суровостью отличается северная часть России, к которой относится более 67% территории страны. Народное хозяйство в этой зоне обслуживается в основном автомобильным транспортом.

Специфика автомобилей как передвижных источников загрязнения заключается в низком расположении, пространственного распределения и непосредственной близости к жилой застройке. В результате при общей доле транспорта в массовом выбросе загрязняющих веществ в атмосферу, равной 35—60%, доля транспортных средств в загрязнении воздуха в городах превышает 90% [Потапов, Цыплакова, 2006].

Особенности автомобильного транспорта, влияющие на ухудшение санитарных условий проживания в северных городах:

- 1) Увеличение автопарка по сравнению с ростом числа стационарных автостоянок;
- 2) Пространственное распределение автомобилей создает общий повышенный фон загрязнения;
- 3) Близость к жилой застройке насыщение количества автотранспортных средств возле жилых домов, заполняя проезды, дворовые территории;
- 4) Повышенная токсичность выбросов автотранспорта по сравнению с выбросами на стационарных автостоянках;
 - 5) Сложности в создании средств защиты от загрязнений на автомобилях;

6) Высота выброса составляет 0,5— 0,7 метров от земной поверхности, в результате чего отработавшие газы автомобилей скапливаются в зоне дыхания людей, слабо рассеиваются ветром по сравнению с промышленными выбросами и выбросами от стационарных стоянок.

Перечисленные особенности автотранспорта влияют на создание в городах зон с устойчивым превышением санитарно-гигиенических нормативов качества воздуха. В отдельных районах концентрация превышает предельно допустимую концентрацию.

Малые скорости, частые изменения направления и скорости движения, многократные торможения и разгоны, короткие расстояния перевозок обусловливают работу двигателей преимущественно на неустановившихся тепловых режимах — это все и есть специфика формирования количества и состава загрязняющих веществ в северных городах.

Уровень загазованности улиц зависит: от характера застройки, автотранспортного потока, ширины и уклона улиц, температуры окружающей среды и скорости ветра.

Затруднено рассеивание выбросов автомобилей на тесных улицах и замкнутых дворовых территориях.

На скорость распространения загрязнения в городе оказывают воздействие температурные инверсии, возникающие при безветрии (75% случаев) или при слабых ветрах (от 1 до 4 м/с).

Инверсии играют роль экрана, от которого на земную поверхность отражается факел вредных веществ, в результате чего их приземные концентрации возрастают в несколько раз.

Ночью, при отсутствии автомобильного потока концентрация оксида углерода в воздухе снижается до нуля. Утренний и вечерний максимумы в интенсивности движения обусловливают резкий рост содержания в воздухе окиси углерода; на уровень его концентрации оказывают влияние метеорологические условия: концентрация окиси углерода на магистралях городов при неблагоприятных климатических условиях может достигать 500

 ${\rm M\Gamma/M^3},$ что в десятки раз превышает предельно допустимое значение, во дворовых территориях $-63~{\rm M\Gamma/M^3}$ и более.

Слабый турбулентный обмен утром способствует росту загрязнений. Интенсивность движения автомобилей в вечернее время меньше отражается на концентрациях, так как в этот период метеорологические условия способствуют рассеянию автомобильных выбросов.

Беспокойство представляют автомобильные заторы, характерные не только для крупных, но уже и для малых северных городов. Объем выделяемых в атмосферу токсичных веществ связан с расходом топлива, зависящего от скорости движения автомобиля.

При медленном движении транспорта по перегруженным улицам, расход топлива возрастает в три-четыре раза. Но в последние годы во многих, в том числе и северных, городах произошло существенное сокращение экологически чистых общественных средств транспорта — трамваев и троллейбусов - за счет увеличения парка маршрутных такси — заметен рост количества личных автотранспортных средств.

Отметим, что средний возраст автотранспортных средств остается значительным и составляет 11 лет, в том числе 10% парка эксплуатируются более 13 лет. Автомобилей с возрастом до пяти лет насчитывается около 12,5%. Такое явление приводит к большому поступлению загрязняющих веществ в виду износа деталей и двигателей автомобильных транспортных средств.

Ключевую роль при оценке воздействия автотранспорта на состояние окружающей среды городов имеют климатические условия региона. Такие факторы, как низкая температура, ветер, давление, влажность, снег влияют на организацию эксплуатации, хранение автомобилей. Температура наружного воздуха оказывает непосредственное воздействие на пуск и работу двигателей и других агрегатов автомобилей [Цыплакова, 2011].

В большинстве случаев в городах Крайнего Севера хранятся автомобили во дворах жилой застройки и безгаражное хранение. Острая экологическая ситуация возникает в местах автостоянок и парковки автомобилей. Открытый

прогрев холодного двигателя занимает по времени не менее 5 минут в теплое время года и до 2 часов в зимнее время года [Цыплакова, 2011].

Площадь северных городов представляет собой совокупность жилых микрорайонов, нежилых зданий, предприятий, и поэтому условия проветривания улиц и дворов случайны [Пути решения экологических проблем автотранспорта, 2006].

Атмосферный воздух северных городов является сильно загрязненной примесями автотранспортного происхождения, что отрицательно воздействует на состояние здоровья городских жителей.

1.6 ВЫВОДЫ

Данный анализ источников по проблеме загрязнения окружающей среды продуктами автомобильного транспорта показывает, что общая картина загрязнения окружающей среды представлена авторами в достаточной полноте.

Важным выводом исследований стало то, что атмосфера северных городов является повышенной зоной риска в экологическом аспекте, так как происходит не только отрицательное воздействие на здоровье жителей конкретных городов Севера, но и возникновение дисбаланса атмосферных масс, так как ранее северные территории являлись "фильтрами" более загрязненных смежных районов.

В целом характерно, что ряд исследователей проблемы загрязнения окружающей среды продуктами автомобильного транспорта ограничивается постановкой проблемы без указания путей ее решения.

В итоге эти исследования, достигающие высокого качества фрагментарно, страдают отсутствием системного представления и требуют не локализации, а системного свода данных. В связи со сказанным, они на данный момент не решают проблемы в целом.

Таким образом, можно сделать вывод о своевременности и актуальности нашего исследования в ракурсе особенностей исследований перечисленных

авторов - как развивающее тему на новом уровне с учетом практических исследований как доказательной базы.

ГЛАВА 2 ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОРОДОВ ТЮМЕНЬ И НАДЫМ

2.1 ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОРОДА ТЮМЕНЬ

2.1.1 Географическое положение города Тюмень

Город Тюмень расположен в Западно-Сибирской равнине, административный центр Тюменской области, граничащая на севере с Ханты-Мансийским автономным округом, на востоке с Омской областью, на юге с республикой Казахстан, Курганской областью, на западе со Свердловской областью. Географические координаты города Тюмень: 57°09′07″ северной широты, 65°31′37″ восточной долготы. Город занимает площадь 698 км².

Согласно физико-географическому районированию Н.А. Гвоздецкого, территория, где расположен город, относится к Туринской подпровинции, Тавдино-Пышминской провинции лесной области в зоне подтайги [Гвоздецкий, 1973].

Карта физико-географического районирования Тюменской области представлена на рисунке 2.1 (Рисунок 2.1).

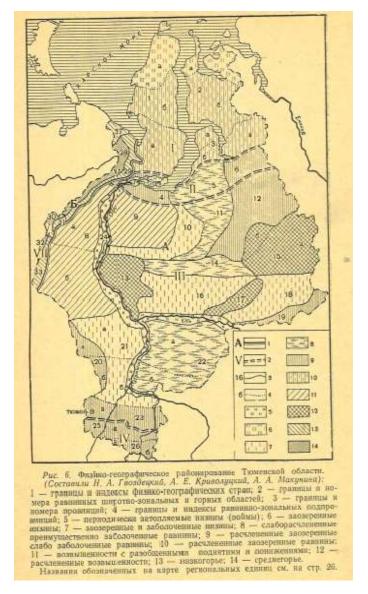


Рис. 2.1. Карта физико-географического районирования Тюменской области.

В административном делении принято называть Тюмень имеет статус городского округа, поделенный на 4 административных округа: Калининский, Центральный, Восточный, Ленинский. Городской округ Тюмень граничит с Нижнетавдинским и Тюменским районом. Космический снимок города изображен на рисунке 2.2 (Рисунок 2.2).



Рис. 2.2. Космический снимок города Тюмень [По данным https://yandex.ru/maps]

2.1.2 Геолого-геоморфологические условия города Тюмень

Город Тюмень находится в юго-западной части Западно-Сибирской равнины, Туринской низменности, которая представляет поверхность с небольшими понижениями, появившимися на местах древних ложбин стока с увалами и гривами [Швер, 1985].

В геологическом отношении территория Тюмени представлена палеогеновыми и четвертичными отложениями. Хорошо выделены озерно-аллювиальные разности третьей, второй, первой надпойменных террас. Верхнечетвертичные и современные нерасчлененные отложения представлены делювиальными и озерно-болотными разностями. Озерно-болотные отложения развиты на всех геоморфологических уровнях, общая мощность которых от 1,5 до 5,0 метров [Швер, 1985].

Река Тура проходит в пределах Тюмени; речная долина реку Тура характеризует геоморфологию города. Абсолютные отметки рельефа местности составляют 50-105 метров [Швер, 1985].

На правом берегу реки расположена историческая, сейчас центральная часть города. На левом берегу реки расположена Заречная часть города. Жилая застройка имеются в западной и восточной частях поймы реки новой и старой застройки [Швер, 1985].

2.1.3 Климатическая характеристика города Тюмень

Географическое положение Тюмени и области определяют особенности климата. Главные факторы формирования климата – это приход воздушных масс с запада и влияние материка. Взаимодействие двух противоположных факторов придает циркуляции атмосферы циклонов и антициклонов, что приводит к резкой смене погоды и сильным ветрам. На формирование климата влияние оказывает защищенность Уральскими горами, уязвимость местности территории с севера и юга. Над территорией осуществляется меридиональная циркуляция: нередко происходит смена холодных и теплых воздушных масс, вызывающая резкие переходы от тепла к холоду.

Тюмень расположена на западной окраине азиатской части России, умеренном широтном поясе, вдали от океанов и морей. Климат города континентальный, зависящий от особенностей воздушных масс материка и атмосферных явлений, которые приходят из Европы. Наблюдается быстрые переходы смена циклонов и антициклонов, чем в Европейской части России [По данным http://vuzlut.ru].

В зимнее время ключевую роль в циркуляции атмосферы играет Азиатский антициклон. Южными и юго-западными ветрами на территорию области выносятся холодные воздушные массы - приносят морозную и ясную погоду. Количество дней под антициклоном увеличивается с севера на юг.

Активность западного циклонального переноса возрастает при ослаблении Азиатского антициклона. Это приводит к проникновению Атлантических воздушных масс: приносят потепление, снегопады и оттепели. Усиление меридионального переноса воздушных масс происходит в теплый период. Арктический воздух, двигаясь на юг, превращается в континентальную умеренную воздушную массу — стоит сухая и теплая погода. С юга на территорию области континентальными воздушными массами тропического типа выносится большое количество тепла — устанавливается сухая погода с засухами и суховеями.

Северные и северо-западные циклоны приносят резкое похолодание в переходные сезоны года. Западные и юго-западные циклоны приносят пасмурную погоду с дождями. Южные циклоны приносят грозы, сильными ветрами и дожди.

Тюмени свойственны суровая снежная продолжительная зима, теплое короткое лето. Безморозный период длится в воздухе всего 121 день, на почве 106 дней. Характерны резкие колебания температуры в течение всего года [Швер, 1985].

Термический режим Тюмени подвержен сильному влиянию внешних воздействий, присущи резкие переходы к холоду, значительные изменения температуры. Среднегодовая температура воздуха +0,9°C, среднемесячная наиболее холодного месяца января - 17,4°C, самого жаркого – июля +24,0°C. Абсолютный минимум температуры отмечен в феврале -50°C, абсолютный максимум в июне +40°C. Сумма положительных температур выше 10° составляет 1983°C.

Количество осадков колеблется от 200 до 600 мм в год, они выпадают преимущественно с мая по октябрь. Летом часты осадки ливневого характера, зимой обложные и моросящие. Средняя годовая сумма осадков 524 мм — большая часть от общего количества приходится на период с апреля по октябрь (69 %). Самое минимальное количество осадков наблюдается в конце февраля 15 мм, максимальное в июле 89 мм.

Для окрестностей Тюмени характерно обилие солнечного света. Продолжительность солнечного сияния достигает примерно 2017 часов в год, а

бессолнечных набирается всего 78 дней: за зиму -52, осень -14, за лето -12. [По данным https://studwood.ru].

Первое появление снежного покрова отмечается в середине октября, который сразу же тает. Увеличение снежного покрова начинается в конце осени. Максимальная высота снежного покрова превышает 80 мм. Снежный покров сохраняется 161 день [По данным https://studwood.ru].

Во все сезоны, кроме лета, преобладают ветры юго-западного направления, летом же чаще других отмечаются северо-западные и северные ветры. Средняя годовая скорость ветра 3,4 м/с, наиболее ветреный месяц в году – май (средняя скорость 3,5 м/с), наиболее тихий – август (средняя скорость 2,5 м/с) [По данным https://studwood.ru].

Данные по повторяемости направления ветра и штилей приведены в таблице 2.1 (Таблица 2.1). Данные использованы с портала rp5.ru [По данным https://rp5.ru/].

Таблица 2.1 Повторяемость направлений ветра и штилей (в процентах)

Месяц	С	CB	В	ЮВ	Ю	ЮЗ	3	C3	Штиль
Январь	6	6	6	8	19	30	16	9	5
Февраль	5	5	6	9	20	30	13	12	3
Март	5	4	5	10	19	27	18	12	3
Апрель	7	4	6	7	19	24	18	15	4
Май	12	8	5	7	13	1	16	20	4
Июнь	13	9	3	6	10	1	18	20	5
Июль	14	11	5	7	9	5	19	20	4
Август	14	7	8	8	9	4	16	24	5
Сентябрь	9	5	4	8	12	25	20	17	3
Октябрь	7	3	4	6	14	28	21	17	2
Ноябрь	7	4	4	8	15	29	21	2	4
Декабрь	4	6	3	7	16	34	16	4	4
Год	8	6	5	8	14	25	18	16	4

На рисунке 2.3 отображена годовая роза ветров в Тюмени (Рисунок 2.3). Данные использованы с портала rp5.ru [По данным https://rp5.ru].

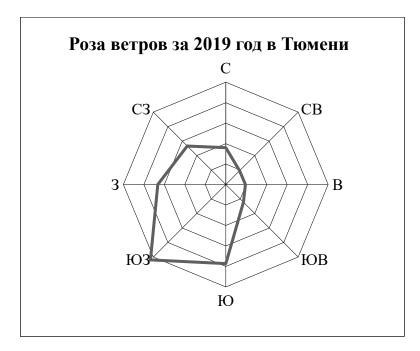


Рис. 2.3. Роза ветров за 2019 год в Тюмени

Направление ветра зависит от таких условий как атмосферная циркуляция и рельеф. С начала осени и конец зимы в Тюмени преобладает ветер юго-западного направления. Летом давление ниже, чем над морями Северного Ледовитого Океана, в связи с этим на континенте преобладают северные и северо—западные ветры.

Зимой, при отрицательных значениях температурного градиента концентрации выхлопных газов в приземном слое воздуха возрастают с ослаблением вертикальных потоков воздуха.

Юг Западной Сибири относится к территории с повышенным потенциалом загрязнения атмосферы: характеризуется слабым, умеренным и значительным переносом воздуха при преобладании умеренного. Наблюдается высокая повторяемость инверсий (90–95%).

Это способствует перемещению воздушных масс со стороны Калининского и Ленинского районов в сторону Центрального округов Тюмени.

Часто наблюдаются летом ветры смежных румбов: западный (повторяемость 14–18%) и северный (15–19%). В переходные периоды,

преобладающее направление ветра выделить труднее. Иногда весной дуют ветры южного, юго-западного, западного и северо-западного направлений.

Годовой ход скорости ветра выражен довольно четко. Минимальные значения средних месячных скоростей в г. Тюмени (2,5–3 м/с) наблюдаются летом (июнь—август), максимальные (до 3,5 м/с) – в переходные сезоны. В течение всего года наибольшую повторяемость имеют скорости ветра 2–3 м/с.

Слабые ветры (2 м/с и менее) в г. Тюмени в среднем продолжаются от 10 до 14 ч, наибольшая непрерывная продолжительность их может достигать 10 суток. Наиболее продолжительны в течение всего года ветры скоростью 4 м/с и менее. Повторяемость штилей в Тюмени за год составляет 9% общего числа наблюдений. Чаще всего безветрие устанавливается в июле-августе (16%).

Таким образом, попавшие в атмосферу примеси в зависимости от метеорологических условий в одних случаях быстро рассеиваются, в других, наоборот, скапливаются в приземном слое. Рост концентраций примесей в жилой застройке наблюдается, если ветер дует со стороны магистрали на жилой массив [Литвинова, 2016].

Средняя годовая скорость ветра достигает 4,0 м/с, слабые ветры отмечаются в июле - августе - менее 2,5 м/с.

2.1.4 Гидрография

Равнинный рельеф и горизонтальное залегание неогеновых и четвертичных отложений обуславливают малые уклоны рек. В окрестностях Тюмени гидрологическая сеть представлена рекой Турой с притоками Бабарынка и Ключи, в пригодной части - рекой Пышма.

Тура — одна из крупных рек восточного склона Уральских гор. Бассейн реки имеет площадь 80400 км² [Гвоздецкий, 1973].

Средний расход воды Туры у г. Тюмени составляет — 196 м³/с. Самый высокий уровень воды зафиксирован в 2016 году 11 мая 868 см, а самый низкий зафиксирован 23 марта 2012 года - 52 см [По данным https://allrivers.info].

Размах колебаний у реки Тура составляет почти 9 м. Среднегодовой объем годового стока воды реки в пределах города Тюмени составляет 6,2 км³ [По данным http://safe-rgs.ru].

Стоит добавить, к бассейнам рек Туры и Пышмы относятся озера старичные, вытянутые, дуговидной и серповидной формы. Многие озера сохраняют связь с реками через протоки [Бакулин, 1996].

Большинство озер постепенно зарастают и превращаются в болото. В зеленой зоне города кроме озер имеется несколько искусственных водоемов-прудов (Цимлянский, Утиный, Южный и другие) [Гусейнов, 2001].

Питание озер происходит за счет атмосферных осадков и поверхностных весенних вод, в меньшей степени грунтовых вод [Гвоздецкий, 1973].

2.2. ФИЗИКО-ГЕОГРАФИЧЕСКАЯ ХАРАКТЕРИСТИКА ГОРОДА НАДЫМ

2.2.1 Географическое положение города Надым

Город Надым – город окружного подчинения, центр Надымскоо района, Ямало-Ненецкого автономного округа. Географические координаты Надыма: 65°32′00″ северной широты, 72°31′00″ восточной долготы. Площадь города составляет 185 км².

Согласно природному районированию территория Надымского района расположена в северной части Западно-Сибирской равнины, в лесотундровой равнинной широтно-зональной области, по физико-географическому районированию территория, где расположен город, относится к Западно-Сибирской стране, лесотундровой равнинной широтно-зональной области, Надымской провинции в зоне лесотундры [Гвоздецкий,1973].

2.2.2 Геолого-геоморфологические условия города Надым

Надым расположен в первой надпойменной террасы и высокой поймы реки Надым.

Отложения высокой поймы представлены мелкими и пылеватыми песками. Речные отложения первой надпойменной террасы сложены песками разной крупности, пылеватые разности, с маломощными прослойками суглинков и супесей, мощность таких отложений составляет 10-16 метров [Абакумов, Печкин, Шамилишвили, 2016].

Геоморфология территории характеризуется распространением озерноаллювиальных террас и представляет собой субгоризонтальную поверхность с абсолютными отметками от 30 до 60 метров.

Недалеко от города находятся Надымские сопки – положительные формы рельефа, представляют сложную систему речных террас в виде холмов и гряд с абсолютными отметками 40-70 метров [Абакумов, Печкин, Шамилишвили, 2016].

2.2.4 Климатическая характеристика города Надым

Особенностью для территории является присутствие воздушных масс циклонического типа в течение всего года. Всю зиму и конце летнего периода наблюдаются частые туманы.

Зимой в циркуляции атмосферы над Надымским районом циркулирует Азиатский антициклон. При его ослаблении происходит воздействие западного переноса воздушных масс, что приводит к проникновению измененных воздушные массы с Атлантики, следствие этого происходит оттепель.

Уральские горы трансформируют теплые потоки воздуха и влаги с запада. Летом происходит усиление меридионального переноса воздушных слоев. Циклоны с северо-западной части приносят холодную погоду осенью. Западные и юго-западные циклоны вызывают обложные дожди. Расположение города возле Северного полярного круга, далекое расположение от теплых воздушных масс и вод с Атлантики и Тихого океана, равнниный рельеф сделало доступным для проникновения воздушных масс с Арктики летом и господство переохлажденных воздушных масс в зимний период, что приводит к резкому изменению климатических условий.

На климат влияют следующие условия: многолетняя мерзлота, близость к холодному Карскому морю, наличие большого количества речных долин, болотных массивов и озер, Азиатский континент, проявляющийся в трансформации воздушных масс и возрастания климата с северо-запада на восток.

Повторяемость приземных инверсий составляет 40%, средняя мощность приземных инверсий колеблется от 0,4 - 0,5 километров при интенсивности 3-5 °C. В ходе приземных инверсий прослеживается зимний максимум, которому способствует установление сибирского антициклона с преобладанием ясной погоды - происходит сильное выхолаживание подстилающей поверхности воздуха.

Город находится в зоне субарктического континентального климата. Для такого климата характерны продолжительная суровая зима и прохладное короткое лето. Особенностью такого климата в городе является продвижение холодных воздушных масс с севера, достигающие южную часть Надымского района, ветра с юго-востока, дующие на север. Преобладают резкие изменения температуры воздуха, избыточная влажность, зимы с метелями, мощный снежный покров.

Зима длинная и очень холодная, снежная. Количество дней со снежным покровом и стойкими морозами около 200 дней в году. Весна наступает медленно и проходит незаметно, так как она достаточно короткая и немного засушливая.

Лето непродолжительное, прохладное, длится приблизительно 65 дней. Осень имеет среднюю продолжительность, она отличается избыточной влажностью. Средняя скорость ветра составляет 3,1 м/с.

На рисунке 2.4 приведен график средних месячных температур города Надым за 2014-2019 год. (Рисунок 2.4).

Данные рассчитаны самостоятельно с использованием портала rp5.ru [по данным https://rp5.ru].

Рис. 2.4. Среднемесячные температуры города Надым за 2015-2019 года

Количество осадков колеблется от до миллиметров в год. Средняя годовая сумма осадков 432 миллиметров. Средняя месячная относительная влажность воздуха холодного месяца составляет 78%, наиболее теплого месяца - 70%.

В Надыме преобладает южное, юго-западное направление ветра.

На рисунке 2.5 отображена роза ветров в Надыме за 2019 год (Рисунок 2.5). Данные рассчитаны самостоятельно с использованием портала rp5.ru [По данным https://rp5.ru].

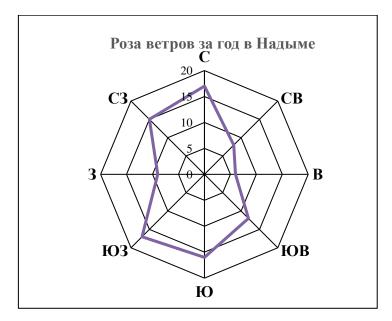


Рис.2.5. Роза ветров города Надым за 2019 год

2.2.5 Гидрография

В нескольких километрах от Надыма протекает река Надым, берущая начало в озере Нумто в Ханты-Мансийском автономном округе. Река течет с юга на север, впадает в Обскую губу Карского моря в южной части, представляя собой дельту. Длина реки составляет 545 километров, площадь водосбора реки Надым составляет 64000 км². Насчитывается более 2800 рек, ручьев и проток. Питание реки исключительно снеговое.

Болота в районе плоскобугристые. Высокая заболоченность территории (40%) связана с равнинностью рельефа, близким залеганием к поверхности многолетней мерзлоты и значительное превышение осадков над испарением. На водоразделах наиболее распространены плоскобугристые болота с осоковосфагновыми и гипновыми мочажинами. По надпойменным террасам и берегам озер развиты плоскобугристые болота со сфагновыми-кустаничковыми буграми и осоково-гипновыми мочажинами [Иванова, 1976].

2.3 ВЫВОДЫ

Надым расположен севернее Тюмени и его непосредственная близость к холодному Карского морю характеризует суровость климата.

В связи с этим, активная циклоническая деятельность, частое прохождение глубоких циклонов и мощных антициклонов объясняют изменчивость атмосферного давления в течение года на территории Надыма.

Отметим, что спецификой города Надым является его замкнутые микрорайоны, обеспечивающие микроклимат дворовых пространств, что препятствует попаданию дующих холодных ветров в зимнее время.

Длительный зимний период с низкими температурами окружающего воздуха, с метелями и устойчивого снежного покрова определяют сложность в эксплуатации автотранспортного средства в приполярном городе: это запуск, износ и долгий прогрев двигателя, ухудшение испаряемости горючего и увеличенный расход топлива.

Тюмень в отличии от Надыма, ввиду своего расположения, отличается иной совокупностью мягкого континентального климата южной тайги умеренного пояса. В зимнее время отмечаются северо-западные циклоны и сибирские антициклоны, характеризующиеся малооблачной морозной погодой. Также в Тюмени преобладают юго-западные движения воздуха как следствие образование азиатских антициклонов.

Особенности микроклимата районов Тюмени складываются, исходя из топографии местности, размещения крупных водных объектов, промышленных предприятий, характера застройки, ширины улиц и прочего.

ГЛАВА 3 МАТЕРИАЛЫ И МЕТОДЫ

3.1 ОПРЕДЕЛЕНИЕ АВТОМОБИЛЬНЫХ ВЫБРОСОВ В ГОРОДАХ ТЮМЕНЬ И НАДЫМ РАСЧЕТНЫМ МЕТОДОМ

Для получения и выяснения причин распространения выхлопных газов в течение двух зимних сезонов проводился теоретическое определение количества автомобильных загрязнений в двух городах — в Тюмени и в Надыме.

Соответственно, получение исходных данных происходило на основе визуальных (натурных) наблюдений автора диссертации. В ходе работы выполнялся учет автомобильного трафика на 24 перекрестках Тюмени и Надыма. Ими стали следующие участки, отображенные на карта-схемах. Участки были выбраны по разной степени интенсивности движения автомобилей. Учет проводился по следующим категориях автомобильных транспортных средств: легковые автомобили, маршрутные транспортные средства, грузовые автомобили массой более 3,5 тонн, грузовые автомобили массой менее 12 тонн и автобусы (общественный транспорт), выполняясь в утреннее и вечернее время, в рабочие дни, в течение 20 минут (Рисунок 3.1 -3.3).

Рис. 3.1. Учет автотранспортных средств на ул. Бабарынка города Тюмень, зимой в 2019 году.

Рис. 3.2. Учет автотранспортных средств на перекрестке улиц Дружбы и Щербакова в городе Тюмень, зимой в 2019 году.

Исследование по изучению влияния автомобильного транспорта на состояние атмосферы проводилось в зимний период с 28 января по 8 февраля 2019 года на 24 перекрестках Тюмени разной степени интенсивности. Изучали численность автомобилей по 5 категориям (легковые автомобили, маршрутные транспортные средства, грузовые автомобили более 3,5 тонн и менее 12 тонн, автобусы) - учет автомобильного трафика на регулируемых и нерегулируемых перекрестках.

Для более подробного описания характеристики точек, рассмотрена классификация городских улиц и дорог по В.А.Бутягину, где отражен смысл назначения и транспортной характеристики улицы.

В.А.Бутягин выделяет следующие категории улиц, которые в свою очередь делятся подкатегории:

- 1. Скоростные дороги характеризуются скоростным сообщением всех районов города, с крупными промышленными зонами и общей сетью междугородных автомобильных дорог.
- 2. Магистральные улицы общегородского значения делятся на центральные проспекты являются основными улицами в центральной части

города, где расположены административные, общественные здания, места массового посещения, деловая застройка. Транспортные магистрали — имеют связь с районами города, между центрами районов, городского центра, социально-значимые объекты городского значения.

3. Улицы и дороги с местным движением делятся на: улицы местного значения в жилых районах — по ним осуществляется выезд на центральные районные улицы; улицы местного значения в промышленных и складских районах — примыкают к предприятиям промышленности [Бутягин, 1974].

Результаты визуального исследования отображены в приложениях 2-5 (Приложение 2-3).

Аналогичное наблюдение проводилось в 2020 году в период с 10 по 21 февраля. Результаты представлены в таблицах приложения 4 и 5 (Приложение 4-5).

Выбранные точки проведения учета автотранспортных средств изображены на рисунке 3.3 (Рисунок 3.3). На карта-схеме отмечены категории улиц. Каждый цвет имеет свою категорию.

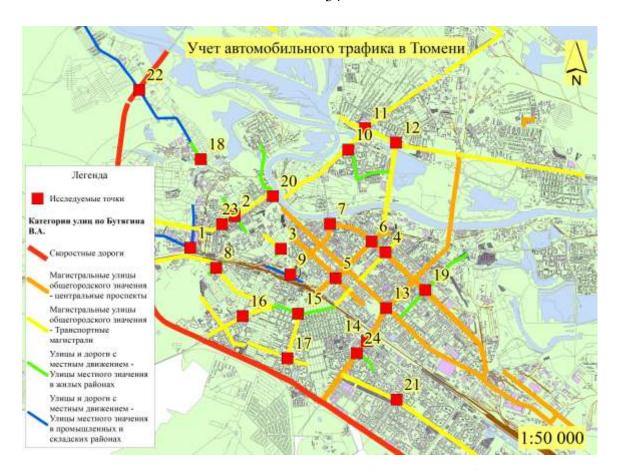


Рис. 3.3 – Карта-схема учета автомобильного трафика в Тюмени

Улицы, на которых расположены выбранные перекрестки города Тюмень, оценены в табличной форме (Приложение 8).

После выполнения натурных исследований проводится камеральная обработка данных. Она включает в себя расчет количества выбросов от передвижных источников.

Расчет выбросов по двум сезонам проводился в программа-методике «Автотранспортное предприятие», предназначенной для расчета выбросов загрязняющих веществ от автотранспорта, в соответствии с нормативными документами. Эта программа-методика способна рассчитывать выбросы на стоянках автомобилей и дорожных машин, выбросы при движении автомобильного транспорта и работе дорожной техники, в зонах станциях технического обслуживания и при мойке транспорта.

В программу вносят данные по количеству автомобилей: главным итогом в программе становится сумма по каждому из веществ. Программа рассчитывает

теоретический выброс по диоксиду азота, окись углерода, диоксид серы, бензин (нефтяной, малосернистый), керосин, смесь предельных углеродов (С1-С5), как общий (суммарный), так и по отдельности в каждой точке единицах измерений: в тоннах в год и в граммах в секунду (Рисунок 3.4).

Рис. 3.4 Фрагмент программы-методики «Автотранспортное предприятие»

Подобное исследование проведено в городе Надым в один зимний сезон. В период с 14-23 января 2019 года был выполнен подсчет автомобильных транспортных средств в городе Надым в 24 точках (Рисунок 3.5-3.7).

Рис. 3.5. Учет автотранспортных средств на ул. Ямальская города Надым, зимой в 2019 году. Создано автором.

Рис. 3.6. Учет автотранспортных средств на перекрестке улиц 2-й проезд и 7-й проезд города Надым, зимой в 2019 году. Создано автором.

Рис. 3.7. Карта-схема учета автомобильного трафика в городе Надым (Составлено автором)

Учет потока автомобильных транспортных средств проводился в рабочие утренние и вечерние часы по 5 категориям транспортных средств, указанных в таблицах приложений (Приложение 6,7).

Улицы, на которых расположены выбранные перекрестки города Надым, оценены в табличной форме в приложении 9 (Приложение 9).

3.2 НОВЫЙ МЕТОД ОЦЕНКИ РАСПРЕДЕЛЕНИЯ АВТОМОБИЛЬНОГО ТРАНСПОРТА В ЧЕРТЕ ГОРОДА С ИСПОЛЬЗОВАНИЕМ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ И ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ

Современное представление об эколого-географических аспектах очень сложно представить без использования картографического метода в научном исследовании. Карта является незаменимым помощником для установления

факторов, связей, закономерностей во времени. Создание карт является одним из популярных и универсальных методов исследования (отображения данных) в науке и в других сферах деятельности.

Статистика и карта тесно связаны между собой — это дает возможность анализировать и актуализировать геостатистические данные как во времени, так и в пространстве и создавать на их основе точные модели.

В мировой практике усиленное развитие получила уникальная технология создания систем сохранения пространственных данных, известная как «Геоинформационные системы». Учитывая разнообразие отраслей, с уверенностью можно говорить о универсальности применения ГИС по принятию решению задач.

Касаемо сферы экологии, особое внимание сейчас уделяется проблеме загрязнения окружающей среды в городе.

Согласно государственным экологическим отчетам, в урбанизированных зонах большое воздействие на загрязнение окружающей среды оказывает автомобильный транспорт, которым активно пользуются жители городов.

Помимо того, что в настоящее время карты по рассеиванию загрязняющих веществ создаются регулярно, целесообразно оказалось сконцентрировать внимание на создании на основе ГИС карты плотности автомобилей города. Был введен термин «плотность автомобилей».

Под понятием «плотность автомобилей» подразумевается количество автомобилей, находящееся на площади одного квадрата. Детально такой подход решено применить на территории городов Тюмень и Надым.

Выбор городов для построения карты плотности автомобилей предполагает ряд признаков:

Находясь на разных широтах, эти два города (Тюмень и Надым) отличаются такой повышенной концентрацией экологических проблем, что, представляя Север и Юг Тюменской области как два форпоста, они способны обозначить во всей полноте картину экологического баланса области.

Как характерный приполярный город (Надым), так и пример административного центра юга Тюменской области (Тюмень) - это два наиболее контрастных объекта, представляющих Тюменскую область (в совокупности с Ямало-Ненецким автономным округом и Ханты-Мансийским автономным округом).

Второй признак этих объектов - их отношение к нефтегазодобывающей промышленности.

Оба представляют сегменты двух разных этапов - начального и заключительного - обработки нефти.

Анализ автомобильных характеристик всего лишь двух - но диаметрально противоположных географических объектов Тюменской области способен выявить тенденции экологического развития области и представить направления этого развития.

В качестве обложки для получения исходных данных использовался материал доступного интернет-портала «Яндекс.Карты» [По данным https://yandex.ru/maps], слой — «Спутник», «Гибрид» и основа городской агломерации города Тюмень и города Надым. Получение космических снимков осуществлялось в интерактивном режиме (через доступ к интернету) в программном комплексе «QGIS». Название спутника «WorldViev-2».

Суть методики заключается в нескольких этапов.

По каждому городу были найдены полигональные границы в формате «shp» (от английского «Shape» - вид, форма) в географической системе координат «WGS-84», проекции «Mercator».

Из загруженных границ в программном комплексе «QGIS» создана при помощи инструментов «Создать сетку» сетка квадратов, каждая сторона ячейки которой составляет 100 метров (Рисунок 3.8). На рисунке 3.9 отображен космический снимок Тюмени с наложение сетки (Рисунок 3.9).

На рисунке 3.10 отображена созданная сетка по границам города Надым (Рисунок 3.10). На рисунке 3.11 отображен космический снимок Надыма с наложение сетки (Рисунок 3.11).

В суммарном отношении по Тюмени таких ячеек получилось 48063. По Надыму выявлено более 6000 ячеек.

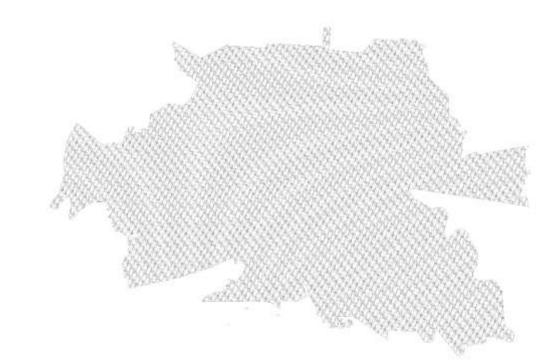


Рис. 3.8 Граница Тюмени с наложением пустой сетки.

Рис. 3.9 Космический снимок Тюмени с наложением сетки.

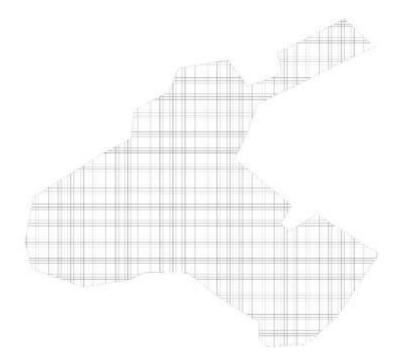


Рис. 3.10 Границы Надыма с наложением сетки.

Рис. 3.11 Космический снимок Надыма с наложением сетки.

Следующим этапом работ был проводимый вручную в программном комплексе «QGIS» учет количества автомобилей в каждой ячейке составленной сетки. Количество автомобилей каждой ячейки при этом заносилось в таблицу атрибутов, где осуществлялось хранение всех данных и значений.

Исходя из полученных данных в табличном формате, в программе выполнена установка отображения цифр в виде окрашенных в определенный цвет квадратов.

Результат проделанной работы представлен в следующей главе.

3.3 ВЫВОДЫ

В ходе рассмотрения вопроса по изучению воздействия автомобильных выбросов на атмосферный воздух был проведён учет транспортных средств по 5 категориям в Тюмени и впервые в Надыме, в дальнейшем определение через программу-методику «Автотранспортное предприятие» количества автомобильных выбросов.

ГЛАВА 4 КАЧЕСТВЕННОЕ И КОЛИЧЕСТВЕННОЕ ВОЗДЕЙСТВИЕ АВТОМОБИЛЬНЫХ ВЫБРОСОВ НА АТМОСФЕРНЫЙ ВОЗДУХ ГОРОДОВ ТЮМЕНЬ И НАДЫМ

4.1 РЕЗУЛЬТАТЫ РАСЧЕТА АВТОМОБИЛЬНЫХ ВЫБРОСОВ

Исходными данными для расчета количества автомобильных выбросов являлись: количество единиц автомобильного транспорта по категориям, включая легковые автомобили за 1 час, двигающиеся на бензиновом и дизельном топливе (тип двигателя), время наблюдения исследования, длина проезда.

По исходным данным в программе-методики «Автотранспортное предприятие» составлены таблицы расчета автомобильных выбросов, приведенные в приложениях 10-15 (Прил. 10-15).

Расчет суммарно максимально разового выброса отмечен в таблицах 4.1-4.3.

Таблица 4.1 Общий автомобильный выброс по точкам в Надыме (зимний период 2019 года) (г/с)

Наименование вещества	Диоксид азота	Азот оксид	Сажа	Ангидрид сернистый	Оксид углерода	Смесь предельных углеродов С1- С5	Бензин	Керосин
Код вещества	301	304	328	330	337	415	2704	2732
г. Надым. Утро	0,030	0,006	0,001	0,009	1,231	0,047	0,107	0,009
г. Надым. Вечер	0,039	0,007	0,001	0,011	1,764	0,071	0,153	0,008

Таблица 4.2 Общий автомобильный выброс по точкам в Тюмени (зимний период 2019 года) (г/с)

Наименование вещества	Диоксид азота	Азот оксид	Сажа	Ангидрид сернистый	Оксид углерода	Смесь предельных углеродов C1-C5	Бензин	Керосин
Код вещества	301	304	328	330	337	415	2704	2732
г. Тюмень. Утро 2019 г.	0,117	0,022	0,004	0,034	5,088	0,112	0,530	0,028
г. Тюмень. Вечер 2019 г.	0,121	0,022	0,004	0,036	5,531	0,140	0,560	0,027

Таблица 4.3 Общий автомобильный выброс по точкам в Тюмени (зимний период 2020 года) (г/с)

Наименование вещества	Диоксид азота	Азот оксид	Сажа	Ангидрид сернистый	Оксид углерода	Смесь предельных углеродов С1- С5	Бензин	Керосин
Код вещества	301	304	328	330	337	415	2704	2732
г. Тюмень. Утро 2020 г.	0,136	0,025	0,005	0,039	5,727	0,160	0,561	0,036
г. Тюмень. Вечер 2020 г.	0,138	0,025	0,005	0,040	5,844	0,156	0,581	0,035

Экспериментальные наблюдения на 24 точках города Тюмень показали, что в точках 5,6,12,15,16 приходится пик потока автотранспортных средств, так как это такие перекрестки, которые соединяют разные части города.

Исследуемый участок №5 - регулируемый перекресток улиц Малыгина, Мориса Тореза, Герцена входит в число точек с максимальным воздействием автомобильных выбросов на атмосферный воздух. Данный перекресток пересекает границу двух городских округов (Калининского и Центрального). Недалеко от него расположена транспортная развязка улиц 50 лет ВЛКСМ, Мориса Тореза, Червишевского тракта. Утром и вечером наблюдаются автомобильные заторы, большое количество автомобилей. Время работы светофора составляет более 3 минут — автомобили стоят на холостом ходу до 2

минут своей очереди проезда через перекресток. Транспортная развязка разрешает проблему быстрого обхода через город в район Червишевского тракта, микрорайон «Маяк», в микрорайоны Московского тракта. Сейчас, жителям города этот участок является единственным путем для проезда в микрорайоны Червишевского тракта и дачных участков, коттеджей, расположенных в районе Червишевского и Московских трактов.

Точка №6 — регулируемый перекресток улиц Профсоюзная и 50 лет Октября. Цикл работы светофора достаточно долгий (около трех минут), увеличенное количество полос (по 3-4 в каждом направлении), время проезда через перекресток ограничено до 30 секунд, долгое ожидание заставляет автомобили работать на холостом ходу. Данный участок объединяет центральную часть города с заречной частью Тюмени (левый берег реки Тура). Поток автомобилей в данном месте достаточно высокий.

Точка №12 — регулируемый перекресток улиц Дружбы и улиц Алебашевская. Большое количество полос, длительное время работы светофора, долгое ожидание заставляет автомобили работать на холостом ходу, большой поток автотранспортных средств, удобный проезд в центральную часть города говорит о его повышенной загрязненности.

Точка №15 — регулируемый перекресток улиц Московский тракт и Ставропольская. Повышенное количество автомобильных выбросов связано с близостью к Объездной дороги города Тюмень, въездом в пригород, увеличенное количество автомобильных полос в разные направление, большой автомобильный поток.

Точка №16 – регулируемый перекресток улиц Червишевского тракта и Рабочая, расположен вблизи сквера Комсомольского, является также один и из загрязненных и загруженных в Тюмени. Перекресток имеет очень долгий цикл работы светофоров – скопление автомобилей также связано с последующим направлением сторону транспортной развязки, проходящую Транссибирскую магистраль и переезд границы 2 округов города. Многим жителям перекресток предоставляет практически единственную ЭТОТ

возможность добраться до центральной части города или доехать в микрорайон Маяк», в микрорайоны в районе Червишевского и Московских трактов.

Проезжая через точки 5,6,12,15,16, являющиеся частью транспортных связей между периферийными районами административного центра, делают центральную часть города транзитной. При этом, это способствует перегрузке улиц и увеличение числа автотранспортных средств на центральных магистралях города.

Полученные данные подтверждают высокую нагрузку на движение автомобилей по центральным и транзитным улицам.

По всем улицам, на которых лежат 24 точки в Тюмени проведена статистика доли по каждой категории. Всего 37 улиц.

13 улиц относятся по классификации В.А.Бурдина категории «Магистральные улицы общегородского значения» - «Транспортные магистрали».

10 улиц относятся категории «Улицы и дороги с местным движением» - «Улицы местного значения в жилых районах» (на карта-схеме выделены красным цветом).

9 улиц принадлежат к категории «Магистральные улицы общегородского значения» - «Центральные проспекты» (на карта-схеме выделены оранжевым цветом).

4 улицы относятся к категории «Улицы и дороги с местным движением» - «Улицы местного значения в промышленных и складских районах» (на картасхеме выделены синим цветом).

Объездная дорога – к категории «Скоростные дороги» (на карта-схеме выделены желтым цветом).

В Надыме максимальное количество загрязнений от автомобильных выбросов наблюдается в точках 1,2,3,16.

Точка №1 — регулируемый перекресток улиц Комсомольской и Ленинградский проспект. В отличии от светофоров, стоящих на центральных и крупных улицах Тюмени цикл работы светофоров отличается в два раза (около

минуты). Перекресток расположен в районе сплошной жилой застройки. Максимальное количество выбросов связано с тем, что этот перекресток связывает улицы с жилыми кварталами с центральной частью города.

Точка №2 — регулируемый перекресток улиц Ямальской и Зверева. Возле этого перекрестка расположены офисные здания, жилая застройка, что поясняет увеличенный трафик. Рядом расположен торговый центр.

Точка №3 — регулируемый перекресток улиц Заводской и Ямальской. Заводская улица — улица, на которой расположены промышленные предприятия и склады, что говорит о повышенном количестве грузового транспорта.

Точка №16 — транспортное кольцо, пересечение улиц Ленинградский проспект и ул. Зверева. Транспортное кольцо находится в центральной части города, по которому проезжают жители города на личном и общественном, транспорт в Салехард и в Новый Уренгой. Две эти улицы в этой части являются транзитными, по которым можно проехать в другие части города.

По всем улицам, на которых лежат 24 точки в Надыме проведена статистика доли по каждой категории. Всего 24 улиц.

Согласно классификации Бурдина В.А., 16 улиц относятся к категории «Улицы и дороги с местным движением» - «Улицы местного значения в жилых районах» (на карта-схеме выделены красным цветом).

7 улиц относятся к категории «Улицы и дороги с местным движением» - «Улицы местного значения в промышленных и складских районах» (на картасхеме выделены синим цветом).

Одна улица относится к категории «Магистральные улицы общегородского значения» – «Транспортные магистрали».

Результаты показывают, что разница в количестве автомобилей на перекрестках городов между утренним и вечерним учетом отличается в среднем на 11% по Тюмени и на 4% в среднем по Надыму.

4.2. СОЗДАНИЕ КАРТ ПЛОТНОСТЕЙ АВТОМОБИЛЕЙ ПО ГОРОДАМ ТЮМЕНЬ И НАДЫМ

Конечным продуктом проделанной работы по плотности автомобилей в Тюмени стала карта, наглядно иллюстрирующая распределение количества автомобилей и табличные данные по 48063 изученным квадратам [Рис.16].

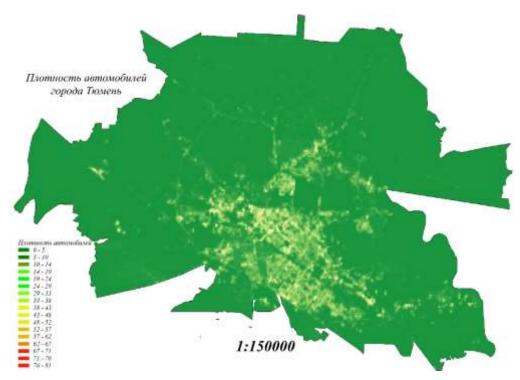


Рисунок 4.1 Карта плотности автомобилей города Тюмень.

На карте обозначена шкала цветов, обозначающие сколько автомобилей удалось увидеть на фрагменте космического снимка. Темно-зеленый — от 0 до 14 автомобилей, светло-зеленый — от 15 — 33 автомобилей, более 34 — насчитывается скопление автомобильных транспортных средств, включая легковые, грузовые (больше 3,5 тонн, менее 12 тонн), маршрутные транспортные средства, автобусы — категории автомобильных транспортных средств. Масштаб карты 1:50000.

По полученным данным можно сказать, что количество автомобилей Тюмени и Надыма отличается примерно в 20 раз. Общая сумма учтенных автомобилей в Тюмени - 94409 автомобилей и в Надыме 4745 автомобилей.

Проанализировав полученные результаты, отмечено максимальное количество автомобилей – 81 автомобиль на местности 100 метров на 100 метров – территория автомобильной парковки торгового центра «Кристалл». Торговый центр не первый год пользуется популярностью среди жителей и гостей города Тюмень и является одним из лучших торговых центров в городе.

Кроме этого, на карте четко определены границы распространения автомобилей. Они находятся в пределах Тюменской кольцевой автомобильной дороги. Совокупность ячеек желтого цвета четко отражают скопление автомобильного транспорта в освоенных человеком территорий.

Стоит также отметить наличие ячеек темно-зеленого тона на карте со значениями от 0 до 5. Ячейки эти заняты зонами рекреации, зданиями, водными объектами, лесной зоной, места, на которых проводятся ремонтные работы, частный сектор (часто), дачные участки, садовые общества.

Карта плотности автомобилей Надыма представлена на следующем рисунке [Рис.17].

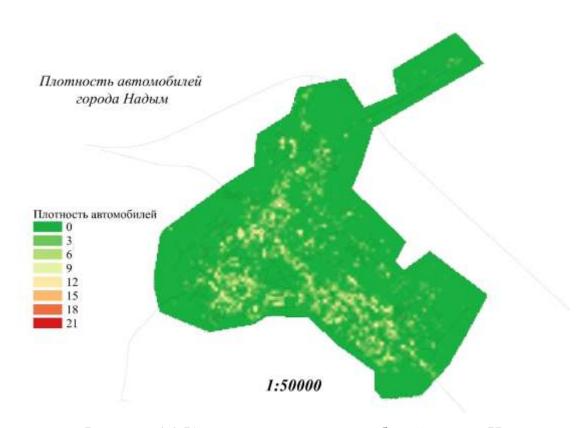


Рисунок 4.2 Карта плотности автомобилей города Надым.

На карте также можно увидеть небольшие участки распространения большего количества автомобилей. По площади город меньше Тюмени, и поэтому максимальное количество автомобилей было ограничено числом 21. Максимальное значение находится в зоне автомобильной парковки напротив организации офисного отдела компании ООО «Газпром добыча Надым».

Отмечается большая доля значений, близких к 0. Скопления автомобилей наблюдаются в разных частях города. Распределение неравномерное.

С помощью программного комплекса QGIS нам удалось выполнить анализ скопления автомобильного движения на территориях двух городов с разным рядом особенностей.

Единственный недостаток выбранного метода заключается в том, при изучении плотности не учитываются подземные, многоуровневые парковки, гаражи, машины, находящиеся вне видения.

Применение этого метода (готовая карта города) поможет исследователю в поиске самых загрязненных мест в городе, загруженных мест, перекрестков, в анализе количества автомобильных выбросов от автомагистралей, городских улиц, рассеивания загрязняющих веществ от нестационарных источников загрязнения, а также в создании рекомендации по минимизации вреда от автомобильных транспортных средств и предотвращению образования заторов.

4.3 ВЫВОДЫ

В южной части России, пример — город Тюмень как административный центр области, характеризуются следующей особенностью: специфика формирования загрязнения атмосферы от автотранспорта на юге — скопление автотранспортных средств перед светофорами. В Надыме — как представитель северного (приполярного города) — характеризуется воздействием автотранспортных средств при прогреве его во дворах.

Построенные карты плотности автотранспортных средств наглядно описывают скопление автомобилей в квадратных ячейках. Это автомобили на парковках возле торговых центров, возле предприятий города, возле мест отдыха. Но распознать движение автотранспортных средств, движение, остановку, связанную с посадкой и высадкой пассажиров или стоянку транспортного средства, практически невозможно.

В дальнейшем, планируется создать качественную карту, которая в обязательном порядке исключала из количества автомобилей те, которые находятся во включенном состоянии остановлены или припаркованы.

Карта плотности автомобилей также наглядно показывает зонирование городских территорий, которые подвержены максимальному загрязнению атмосферного воздуха в летний период. Скопление транспортных средств в этих местах определяет уровень антропогенной нагрузки на природные компоненты и их очаги загрязнения, также определяет выявление рисков при проживании в районах города.

Данная работа стала ярким примером применения дистанционного зондирования, так как отследить посадку и высадку пассажиров практически не предоставляет возможным. В сравнении двух городов разными географическими, природными и социально-экономическими факторами, такими, как климат, количество жителей и площадь территории городов, наличие жилой и нежилой застройки, инфраструктура, качество жизни населения. Карты плотности автомобилей наглядно описывают скопление автомобилей в квадратных ячейках. Это автомобили на парковках возле торговых центров, возле предприятий города, возле мест отдыха.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы: выполнен литературный обзор по проблеме загрязнения автомобильных выбросов атмосферного воздуха, где на основе научных статей и литературы рассмотрен состав автомобильных выбросов, факторы отрицательного влияния, особенности автомобильных выбросах в городах, расположенных в разных климатических зонах (в условиях продолжительного периода с низкими температурами и умеренно-континентального климата).

Во второй главе приведен физико-географическим особенностям городов Тюмень и Надым, в котором раскрыты климатические особенности этих городов (режимы погоды: циклональный и антициклональный). Важно отметить специфику Надыма — его замкнутая жилая застройка препятствует попаданию дующих холодных ветров в зимнее период.

В третьей главе описаны две методики, с помощью проводили натурные измерения автомобильного трафика в городах Тюмень и Надым. Впервые создана и внедрена в сравнительный анализ карта плотности автомобилей по двум городам. Сравнение проходили абсолютно разных городов, находящиеся на разных широтах (Надым севернее Тюмени).

Результаты по проведенным экспериментальным наблюдениям в 2019 и 2020 годах показали, что интенсивность автотранспортного потока и количество автомобильных выбросов максимальны на перекрестках улиц, связывающие периферийные микрорайоны города Тюмень. Центр города выполняет роль транзита. В отличии от Надыма степень интенсивности автотранспортных средств в Тюмени выше в 2-3 раза.

В Надыме выбросы автотранспортных средств меньше на перекрестках городов, ввиду того, что для прогрева автомобилей в суровых условиях требуется больше времени, чем при прогреве автомобилей в зимний период в Тюмени. В Надыме, стоит отметить продолжительность периода отрицательных температур больше, чем в Тюмени. Использование космического снимка

помогло создать карту плотности автомобилей по двум городам - по Тюмени и Надыму. По полученным данным можно сказать, что количество автомобилей Тюмени и Надыма отличается в 20 раз. Скопление автомобилей происходит в Тюмени в центральной части города, также возле мест массового скопления людей (торговые центры, промышленные предприятия, социально-значимые объекты). Учет количества автомобилей в Тюмени позволит определить уровень антропогенной нагрузки на природные компоненты и выявляет риски при проживании в районах города.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Абакумов Е.В., Печкин А.С., Шамилишвили Г.А. Особенности почвенного покрова Надымского района, ЯНАО // Научный вестник ЯНАО №4 (93). Салехард: 2016. С. 12-15.
- 2. Агеев Е.В. Особые условия технической эксплуатации и экологическая безопасность автомобилей: учебное пособие. Курск: Юго-Зап. гос. ун-т., 2015. 212 с.
- 3. Бакулин В.В. География Тюменской области: учебное пособие. Екатеринбург: Средне-Уральское книжное издательство, 1996. 240 с.
- 4. Бутягин В.А. Планировка и обустройство городов. Учебник для вузов. Москва: Стройиздат, 1974. 381 с.
- 5. Гвоздецкий Н.А. (ред.) Физико-географическое районирование Тюменской области. Москва: Издательство Московского Государственного Университета, 1973. 248 с.
- 6. Гусейнов А.Н. Экология города Тюмени: состояние, проблемы. Тюмень: Издательская фирма Слово, 2001. 176 с.
- 7. Другов Ю.С., Родин А.А. Экологические анализы при разливах нефти и нефтепродуктов. Санкт-Петербург: Анатолия, 2000. 250 с.
- 8. Ерохов В. И., Одинокова И.В. Влияние организации дорожного движения на выброс вредных веществ автотранспортными средствами // «Автомобиле- и тракторостроение в России: приоритеты развития и подготовка кадров», посвященной 145-летию МГТУ «МАМИ». Москва: МГТУ «МАМИ», 2010.
- 9. Иванова К.Е., Новикова С.М Болота Западной Сибири, их строение и гидрологический режим. Ленинград: Гидрометеоиздат, 1976. 447 с.
- 10. Климатическая характеристика // Studwood.ru URL: https://studwood.ru/1260331/geografiya/klimaticheskaya_harakteristik (дата обращения: 15.04.2020).
- 11. Литвинова Н.А. Автотранспорт и экология воздушной среды города. Тюмень: РИО ФГБОУ ВПО «ТюмГАСУ», 2016. 170 с.

- 12. Новиков Ю.В. Экология, окружающая среда и человек. Москва: ФАИР-ПРЕСС, 2005. 736 с.
- 13. Особенности тюменского климата // Datalife Engine Softnews Media Group URL: http://safe-rgs.ru/688-osobennosti-tyumenskogo-klimata.html (дата обращения: 15.04.2020).
 - 14. Павлова Е.Н. Экология транспорта. Москва: Транспорт, 2000. 248 с.
- 15. Понятие выхлопных газов // Турбоком. Завод трубопроводов URL: http://turbolider.com.ua/teh-centr/poleznaya_informaciya/vyhlopnye-gazy обращения: 02.03.2020).
- 16. Потапов А.И. Хватов В.Ф., Цыплакова Е.Г., Николаев С.Н., Журкович В.В., Волкодаева М.В., Потапов И.А., Денисов В.Н. Пути решения экологических проблем автотранспорта. Санкт-Петербург: Гуманистика, 2006. 650 с.
- 17. Потапов А.И., Цыплакова Е.Г., Янкевич К.А. Основы защиты окружающей среды в мегаполисах: учеб. пособие. Санкт-Петербург: Политехника-принт, 2016. 560 с.
- 18. Расписание погоды //Электронный ресурс Rp5.ru. Режим доступа (https://rp5.ru)
- 19. Технический регламент Таможенного союза «О безопасности колесных транспортных средств» от 09.12.2011 № №877 с изм. и допол. в ред. от 21.06.2019 // КонсультантПлюс.
- 20. Уровень воды в р. Тура по гидропосту г. Тюмень сегодня. // Allrivers.info URL: https://allrivers.info/gauge/tura-tumen (дата обращения: 15.04.2020).
- 21. Характеристика природно-экономических условий города Тюмени // vuzlut.ru URL: https://vuzlit.ru/1089166/harakteristika_prirodno_ekonomicheskih_usloviy_goroda_t yumeni (дата обращения: 15.04.2020).

- 22. Цыплакова Е.Г. Контроль и мониторинг воздействия стационарных и нестационарных энергетических установок на окружающую среду Северных территорий. Санкт-Петербург: Нестор-история, 2011. 560 с.
- 23. Швер Ц.А. Климат Тюмени. Ленинград: Гидрометеоиздат, 1985. 184 с.
- 24. Яндекс. Карты // yandex.ru URL: https://yandex.ru/maps (дата обращения: 15.04.2020).

Приложение 1 Летучие углеводороды, обнаруженные в воздухе городов

No	Углеводород	Химическая формула	Молярная масса
1	Ацетилен	C_2H_2	26
2	Этилен	C_2H_4	28
3	Этан	C_2H_6	30
4	Пропин	C ₃ H ₄	40
5	Аллен	C ₃ H ₄	40
6	Пропилен	C_3H_6	42
7	Циклопропан	C ₃ H ₈	42
8	Пропан	C_3H_8	44
9	1,3-Бутадиен	C ₄ H ₆	54
10	1-Бутен	C ₄ H ₈	56
11	2-Бутен	C ₄ H ₈	56
12	Изобутилен	C ₄ H ₈	56
13	Изобутан	C ₄ H ₁₀	58
14	н-Бутан	C_4H_{10}	58
15	Изопрен	C ₅ H ₈	68
16	Циклопентен	C_5H_8	68
17	2-Метил-1-бутен	C ₅ H ₁₀	70
18	2-Метил-2-бутен	C ₅ H ₁₀	70
19	2-Метил-3-бутен	C ₅ H ₁₀	70
20	1-Пентен	C ₅ H ₁₀	70
21	2-Пентен	C ₅ H ₁₀	70
22	Циклопентан	C ₅ H ₁₀	70
23	2-Метилбутан	C_5H_{12}	72
24	н-Пентан	C ₅ H ₁₂	72
25	Бензол	C_6H_6	78
26	1-Гексен	C ₆ H ₁₂	84
27	3-Гексен	C_6H_{12}	84
28	2-Этил-1-бутен	C_6H_{12}	84
29	2,3-Диметил-1-бутен	C_6H_{12}	84
30	2,3-Диметил-2-бутен	C_6H_{12}	84
31	2-Метил-2-пентен	C_6H_{12}	84
32	3-Метил-2-пентен	C_6H_{12}	84
33	4-Метил-2-пентен	C_6H_{12}	84
34	Метилциклопентан	C_6H_{12}	84
35	Циклогексан	C_6H_{12}	84
36	2,2-Диметилбутан	C_6H_{14}	86
37	2,3-Диметилбутан	C_6H_{14}	86
38	2-Метилпентан	C_6H_{14}	86
39	3-Метилпентан	C_6H_{14}	86
40	н-Гексан	C ₆ H ₁₄	86
41	Толуол	C ₇ H ₈	92

No	Углеводород	Химическая формула	Молярная масса
42	2,3,3-Триметил-1-бутен	C ₇ H ₁₄	98
43	2,3-Диметил-1-пентен	C ₇ H ₁₄	98
44	2,4-Диметил-1-пентен	C ₇ H ₁₄	98
45	2-Метил-3-гексен	C ₇ H ₁₄	98
46	3-Метил-2-гексен	C ₇ H ₁₄	98
47	3-Метил-1-гексен	C ₇ H ₁₄	98
48	1-Гептен	C ₇ H ₁₄	98
49	1-Гептен	C ₇ H ₁₄	98
	1,2-	C/11 ₁ 4	70
50	Диметилциклопентан	C ₇ H ₁₄	98
51	1,3- Диметилциклопентан	C_7H_{14}	98
52	Метилциклогексан	C ₇ H ₁₄	98
53	2,2-Диметилпентан	C ₇ H ₁₆	100
54	2,3-Диметилпентан	C ₇ H ₁₆	100
55	2,4-Диметилпентан	C ₇ H ₁₆	100
56	3,3-Диметилпентан	C ₇ H ₁₆	100
57	3-Этилпентан	C ₇ H ₁₆	100
58	2-Метилгексан	C7H16	100
59	3-Метилгексан	C ₇ H ₁₆	100
60	н-Гелтан	C ₇ H ₁₆	100
61	Стирол	C ₈ H ₈	104
62	Этилбензол	C ₈ H ₁₀	106
63	м-Ксилол	C ₈ H ₁₀	106
64	n-Ксилол	C ₈ H ₁₀	106
65	о-Ксилол	C ₈ H ₁₀	106
66	1-Октен	C_8H_{16}	112
67	1,2,3- Триметилциклопентан	C ₈ H ₁₆	112
68	1,2,4- Триметилциклопентан	C ₈ H ₁₆	112
69	1,2-Диметилциклогексан	C_8H_{16}	112
70	1,3-Диметилциклогексан	C_8H_{16}	112
71	1,4-Диметилциклогексан	C_8H_{16}	112
72	Этилциклогексан	C ₈ H ₁₆	112
73	2,2,4-Триметилпентан	C ₈ H ₁₈	114
74	2,3,4-Триметилпентан	C_8H_{18}	114
75	2,3,3-Триметилпентан	C ₈ H ₁₈	114
76	2-Метил-3-этилпентан	C_8H_{18}	114
77	3-Метил-3-этилпентан	C_8H_{18}	114
78	2,3-Диметилгексан	C ₈ H ₁₈	114

No	Углеводород	Химическая формула	Молярная масса
79	2,4-Диметилгексан	— формула С ₈ Н ₁₈	114
80	2,5-Диметилгексан	$\frac{C_8H_{18}}{C_8H_{18}}$	114
			114
81	3,3-Диметилгексан	C ₈ H ₁₈	
82	3,4-Диметилгексан	C ₈ H ₁₈	114
83	2-Метилгептан	C ₈ H ₁₈	114
84	3-Метилгептан	C ₈ H ₁₈	114
85	4-Метилгептан	C ₈ H ₁₈	114
86	3-Этилгексан	C_8H_{18}	114
87	н-Октан	C_8H_{18}	114
88	Инден	C ₉ H ₉	116
89	Индан	C_9H_{10}	118
90	α-Метилстирол	C_9H_{10}	118
91	1-Метил-2-этилбензол	C_9H_{12}	120
92	1-Метил-3-этилбензол	C_9H_{12}	120
93	1-Метил-4-этилбензол	C ₉ H ₁₂	120
94	1,2,3-Триметилбензол	C ₉ H ₁₂	120
95	1,2,4-Триметилбензол	C ₉ H ₁₂	120
96	1,3,5-Триметилбензол	C ₉ H ₁₂	120
97	Изопропилбензол	C ₉ H ₁₂	120
98	н-Пропилбензол	C ₉ H ₁₂	120
99	1-Нонен	C ₉ H ₁₈	126
100	4-Нонен	C ₉ H ₁₈	126
101	1,1,3,4- Тетраметилциклопентан	C ₉ H ₁₈	126
102	Триметилциклогексаны (2)	C ₉ H ₁₈	126
103	Метилэтилциклогексаны (3)	C ₉ H ₁₈	126
104	2,5-Диметилгептан	C_9H_{20}	128
105	2,6-Диметилгептан	C_9H_{20}	128
106	2-Метилоктан	C_9H_{20}	128
107	3-Метилоктан	C_9H_{20}	128
108	4-Метилоктан	C ₉ H ₂₀	128
109	н-Нонан	C ₉ H ₂₀	128
110	Нафталин	$C_{10}H_{8}$	128
111	Тетрагидронафталин	$C_{10}H_{12}$	132
112	1,2,3,4- Тетраметилбензол	$C_{10}H_{14}$	134
113	1,2,3,5- Тетраметилбензол	$C_{10}H_{14}$	134
114	1,2,4,5- Тетраметилбензол	$C_{10}H_{14}$	134

No	Углеводород	Химическая формула	Молярная масса
115	1,3-Диметил-5- этилбензол	$C_{10}H_{14}$	134
116	m-Цимол	$C_{10}H_{14}$	134
117	n-Цимол	$C_{10}H_{14}$	134
118	о-Цимол	$C_{10}H_{14}$	134
119	1,2-Диэтилбензол	$C_{10}H_{14}$	134
120	1,3-Диэтилбензол	$C_{10}H_{14}$	134
121	m-Пропилтолуол	$C_{10}H_{14}$	134
122	n-Пропилтолуол	$C_{10}H_{14}$	134
123	о-Пропилтолуол	$C_{10}H_{14}$	134
124	Изобутилбензол	$C_{10}H_{14}$	134
125	втор-Бутилбензол	$C_{10}H_{14}$	134
126	трет-Бутилбензол	$C_{10}H_{14}$	134
127	н-Бутилбензол	$C_{10}H_{14}$	134
128	α-Пинен	$C_{10}H_{16}$	136
129	β-Пинен	$C_{10}H_{16}$	136
130	Камфен	$C_{10}H_{16}$	136
131	3-Карен	$C_{10}H_{16}$	136
132	Лимонен	$C_{10}H_{16}$	136
133	Декалин	$C_{10}H_{18}$	138
134	1-Децен	$C_{10}H_{20}$	140
135	трет-Бутилциклогексан	$C_{10}H_{20}$	140
136	н-Бутилциклогексан	$C_{10}H_{20}$	142
137	2-Метилнонам	$C_{10}H_{22}$	142
138	3-Метилнонам	$C_{10}H_{22}$	142
139	4-Метилнонам	$C_{10}H_{22}$	142
140	5-Метилнонам	$C_{10}H_{22}$	142
141	н-Декан	$C_{10}H_{22}$	142
142	1-Метилафталин	$C_{11}H_{16}$	142
143	2-Метилафталин	$C_{11}H_{16}$	142
144	н-Амилбензол	$C_{11}H_{16}$	148
145	Пентаметилбензол	$C_{11}H_{16}$	148
146	1-Ундецен	$C_{11}H_{22}$	154
147	Дифенил	$C_{12}H_{10}$	154
148	Аценафтен	$C_{12}H_{10}$	154
149	2-Метилдекан	$C_{11}H_{24}$	156
150	3-Метилдекан	$C_{11}H_{24}$	156
151	н-Ундекан	$C_{11}H_{24}$	156
152	1,6-Диметилнафталин	$C_{12}H_{12}$	156
153	1,4-Диметилнафталин	$C_{12}H_{12}$	156
154	1,8-Диметилнафталин	$C_{12}H_{12}$	156
155	2,3-Диметилнафталин	$C_{12}H_{12}$	156
156	2,6-Диметилнафталин	$C_{12}H_{12}$	156
157	1-Этилнафталин	$C_{12}H_{12}$	156

No	Углеводород	Химическая формула	Молярная масса
158	2-Этилнафталин	$C_{12}H_{12}$	156
159	н-Гексилбензол	$C_{12}H_{18}$	162
160	Гексаметилбензол	$C_{12}H_{18}$	162
161	Флуорен	C ₁₃ H ₁₀	166
162	Дифенилметан	$C_{13}H_{22}$	168
163	1-Додецен	$C_{13}H_{24}$	168
164	н-Додекан	$C_{13}H_{26}$	170
165	1-Тридецен	$C_{13}H_{26}$	182
166	н-Тридекан	$C_{13}H_{28}$	184
167	н-Тетрадекан	$C_{14}H_{30}$	198
168	н-Пентадекан	$C_{15}H_{32}$	212
169	н-Гексадекан	$C_{16}H_{34}$	226
170	н-Гептадекан	C ₁₇ H ₃₆	254
171	н-Октадекан	$C_{18}H_{38}$	268
172	н-Нонадекан	C ₁₉ H ₄₀	282
173	н-Эйкозан	$C_{20}H_{42}$	282

Приложение 2 Результаты учета автомобильного трафика в зимний период 2019 года в Тюмени в утренние часы (количество автотранспортных средств)

№ точки	Легі На бензине	ковые На газе	Маршрутные транспортные средства	Грузо автомо Более 3,5 тонн		Автобусы
1	372	186	19	6	12	18
2	468	74	17	12	12	18
3	480	165	8	13	9	3
4	454	124	21	9	10	16
5	659	187	30	15	8	26
6	785	168	24	16	8	24
7	436	49	21	3	15	15
8	178	26	15	24	3	15
9	194	49	20	3	8	18
10	332	89	16	14	6	21
11	520	44	14	15	18	12
12	632	160	21	24	14	27
13	516	71	36	12	3	24
14	559	50	27	6	3	15
15	615	115	20	25	17	19
16	612	187	45	24	19	24
17	359	43	0	0	0	0
18	318	101	20	27	18	12
19	434	87	12	9	0	6
20	586	143	54	3	12	36
21	126	36	11	16	8	15
22	504	102	11	42	27	6
23	340	39	9	17	14	23
24	258	74	19	14	11	12

Приложение 3 Результаты учета автомобильного трафика в зимний период 2019 года в Тюмени в вечерние часы (количество автотранспортных средств)

№ точки	Легковые На		Маршрутные транспортные	Грузо автомо Более 3,5		Автобусы
	бензине	На газе	средства	тонн	12 тонн	
1	394	102	10	16	9	7
2	416	120	66	14	6	12
3	497	154	5	21	6	3
4	598	119	24	11	5	20
5	889	139	36	16	9	24
6	894	126	12	13	12	22
7	502	151	16	10	7	14
8	150	20	8	14	7	4
9	244	50	36	9	0	29
10	316	158	27	3	3	27
11	491	94	12	24	5	15
12	795	102	33	19	17	21
13	601	163	26	9	5	25
14	490	131	20	14	7	15
15	668	116	26	17	10	14
16	613	159	24	21	15	25
17	389	78	24	15	8	15
18	264	84	30	16	9	8
19	562	281	45	13	8	45
20	463	97	24	12	6	15
21	314	157	15	9	9	15
22	326	163	16	9	16	6
23	162	81	21	7	6	0
24	252	126	15	6	5	21

Приложение 4 Результаты учета автомобильного трафика в зимний период 2020 года в Тюмени в утренние часы (количество автотранспортных средств)

№ точки	Легковые На гл		Маршрутные транспортные	Грузо автомо Более		Автобусы
	па бензине	На газе	средства	3,5 тонн	12 тонн	
1	230	115	27	12	15	13
2	430	121	15	12	5	17
3	518	179	10	15	9	5
4	522	188	26	18	3	25
5	753	182	60	21	12	51
6	749	135	48	27	12	63
7	345	125	20	6	9	15
8	135	22	18	18	15	12
9	356	135	26	12	18	26
10	430	150	21	12	12	24
11	500	157	27	24	9	24
12	698	157	36	24	9	39
13	631	187	34	15	9	27
14	556	176	21	15	15	18
15	659	196	30	15	15	42
16	656	177	36	12	6	21
17	424	162	24	12	16	18
18	148	36	3	18	24	10
19	462	158	16	9	18	20
20	312	76	24	15	3	20
21	356	118	22	13	5	19
22	623	154	11	20	15	7
23	400	152	16	13	7	15
24	400	136	24	12	12	19

Приложение 5 Результаты учета автомобильного трафика в зимний период 2020 года в Тюмени в вечерние часы (количество автотранспортных средств)

№	Леги	овые	Маршрутные	Грузовые а	автомобили	
точки	На	На газе	транспортные	Более 3,5	Менее 12	Автобусы
	бензине	11a 1 a 3 C	средства	тонн	тонн	
1	264	115	15	9	11	17
2	436	119	14	12	5	14
3	570	177	8	14	7	2
4	560	190	27	18	5	27
5	753	182	60	21	12	51
6	749	135	48	27	12	63
7	390	133	21	8	5	16
8	105	22	16	11	13	10
9	389	116	26	12	18	29
10	440	110	20	12	8	24
11	611	159	24	22	14	26
12	698	157	36	24	8	39
13	640	185	33	15	4	27
14	562	180	24	10	7	19
15	659	196	30	15	15	42
16	656	177	36	12	6	21
17	440	165	25	10	18	20
18	161	26	5	20	22	10
19	462	158	16	9	18	20
20	351	88	22	11	4	19
21	340	118	20	14	6	18
22	669	154	19	24	14	9
23	395	146	14	16	7	14
24	416	106	22	13	8	21

Приложение 6 Результаты учета автомобильного трафика в зимний период 2019 года в Надыме в утренние часы (количество автотранспортных средств)

No	Лег	ковые	Маршрутные	Грузовые а	втомобили	
точки	На бензине	На газе	транспортные средства	Более 3,5 тонн	Более 12 тонн	Автобусы
1	124	62	12	2	4	9
2	156	78	21	4	4	6
3	160	80	25	7	3	16
4	83	41	10	3	6	0
5	71	35	5	8	1	5
6	65	32	14	1	0	6
7	72	36	7	1	5	5
8	81	40	5	8	1	5
9	65	32	14	1	0	6
10	77	39	20	0	2	7
11	40	20	10	1	1	8
12	14	7	2	1	1	1
13	72	36	12	4	1	8
14	53	26	9	2	1	5
15	43	21	8	1	1	3
16	204	102	15	8	10	6
17	21	11	0	0	0	0
18	106	53	11	9	6	4
19	58	29	4	3	0	2
20	129	64	18	1	4	12
21	42	21	10	8	4	5
22	101	51	14	6	4	2
23	47	23	3	8	8	1
24	86	43	9	6	9	2

Приложение 7 Результаты учета автомобильного трафика в зимний период 2019 года в Надыме в вечерние часы (количество автотранспортных средств)

No	Лег	ковые	Маршрутные	Грузовые а	втомобили	
точки	На бензине	На газе	транспортные средства	Более 3,5 тонн	Более 12 тонн	Автобусы
1	171	85	12	2	0	6
2	159	79	22	10	2	4
3	237	119	18	34	2	4
4	49	25	10	2	8	4
5	93	46	12	11	6	3
6	52	26	4	1	5	3
7	101	50	2	2	1	2
8	124	62	1	0	2	1
9	81	41	12	3	0	4
10	105	53	9	1	1	9
11	25	12	4	0	0	1
12	17	8	11	0	0	0
13	109	54	1	4	0	2
14	163	82	15	0	0	11
15	153	77	20	0	1	3
16	254	127	8	2	3	10
17	23	11	0	0	0	0
18	240	120	16	12	5	15
19	187	94	15	6	5	15
20	252	126	8	4	2	5
21	105	52	5	3	3	5
22	109	54	21	3	2	2
23	54	27	7	8	7	0
24	84	42	5	2	1	7

Характеристика исследуемых точек в городе Тюмень

No॒	Географическі	ие координаты	Названия улиц	Категория улиц	Близ расположенные объекты	Примечания
1	Широта 57,1537°	Долгота 65,475511°	Аккумуляторная, Авторемонтая	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах", категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Открытое акционерное общество "Тюменский аккумуляторный завод", железная дорога Трансибирской магистрали, складские помещения	Калининский административный округ
2	57,161936°	65,496586°	Ямская, Льва Толстого	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Школа №26, жилые знания	Калининский административный округ
3	57,153439°	65,518678°	Чернышевского, Гранитная	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Парковка для посетителей Федеральной Налоговой Службы, частные жилые здания, транспортная развязка улиц Чернышевского, Запольная, река Тюменка	Калининский административный округ
4	57,152504°	65,568445°	50 лет Октября, Максима Горького	Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Торговый центр "Магеллан", жилые знания, штаб-квартиры известных компаний "Газпром", "Schlumberger"	Центральный административный округ. Относится к центральной части города Тюмень.
5	57,145794°	65,544708°	Герцена, Малыгина, Мориса Тореза	Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", Категория "Магистральные улицы общегородского значения" - "Центральные проспекты"	Торговый центр "Галерея Вояж", Центральный рынок, "Пенсионный фонд Российской Федерации"	Центральный/Калининский административный округ. Относится к центральной части города Тюмень.

№	Географическ	ие координаты	Названия улиц	Категория улиц	Близ расположенные объекты	Примечания
	Широта	Долгота		- Francis of the Control of the Cont	P	
6	57,155311°	65,561794°	50 лет Октября, Профсоюзная	Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", Категория "Магистральные улицы общегородского значения" - "Центральные проспекты"	"Дом печати", жилые здания, бизнес-центр "Петр Столыпин"	Центральный административный округ. Относится к центральной части города Тюмень.
7	57,159914°	65,542039°	Первомайская, Осипенко	Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", Категория "Магистральные улицы общегородского значения" - "Центральные проспекты"	Дворец культуры "Нефтяник", корпус Тюменского Государственного Университета «Институт Наук о Земле»	Центральный административный округ
8	57,148487°	65,487854°	Интернациональная, Восстания	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилые здания, рынок "Маяк", Сквер Юности	Калининский административный округ
9	57,146725°	65,523126°	Первомайская, Привокзальная	Категория "Магистральные улицы" - "Центральные проспекты", категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Железнодорожный вокзал города Тюмень, Дворец культуры "Железнодорожников"	Калининский административный округ
10	57,179183°	65,550686°	Щербакова, Газовиков	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилые здания, аквапарк "Лето- Лето"	Центральный административный округ
11	57,184736°	65,558758°	Щербакова, Дружбы	Категория "Магистральные улицы общегородского значения" - "Транспортные магистральные улицы общегородского значения" - "Транспортные магистрали"	Жилые здания, магазин "Строительный двор"	Центральный административный округ
12	57,180981°	65,573408°	Дружбы, Алебашевская	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Частная жилая застройка, Заречное кладбище, озеро Алебашево	Центральный административный округ

No	Географическ	ие координаты	Названия улиц	Категория улиц	Близ расположенные объекты	Примечания
	Широта	Долгота				
13	57,138036°	65,568694°	Республики, Мельникайте	Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", Категория "Магистральные улицы общегородского значения" - "Центральные проспекты"	Текутьевский бульвар, Яблоневая роща, Тюменский Технопарк, жилая застройка	Ленинский административный округ, Центральная часть города
14	57,129533°	65,559561°	30 лет Победы, Мельникайте	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Магистральные улицы общегородского значения" - "Центральные проспекты"	Жилая застройка, транспортная развязка через Транссибирскую магистраль	Калининский административный округ
15	57,136606°	65,526769°	Червишевский тракт, Рабочая, Зои Космеденьянской	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Сквер Комсомольский, частный жилой сектор	Калининский административный округ
16	57,135983°	65,500458°	Московский тракт, Ставропольская	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Торговый центр "Колумб", Торговый центр "Блошинка"	Калининский административный округ
17	57,124964°	65,521811°	Червшиевский тракт, Ставропольская	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Жилая застройка, Червишеский рынок, торговый центр "Континент"	Калининский административный округ
18	57,176676°	65,480522°	Бабарынка	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая застройка, частный сектор	Калининский административный округ
19	57,142753°	65,587342°	50 лет Октября, Одесская	Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Гипермаркет "Магнит" жилая застройка	Ленинский административный округ

No॒	Географическ	ие координаты	Названия улиц	Категория улиц	Близ расположенные объекты	Примечания
	Широта	Долгота	_		-	•
20	57,167079°	65,51483°	Коммунистическая, Ямская	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Тюменский Индустриальный Университет, Тюменская Набережная, Крестовоздвиженская церковь, Свято-Троицкий мужскй монастырь	Калининский административный округ. Историческое место города.
21	57,114248°	65,573736°	Широтная, Пермякова	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Торговый центр "Широтный", жилая застройка	Восточный административный округ
22	57,194657°	65,451229°	Объездная дорога, проезд Воронинские горки	Категория "Скоростные дороги", категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Автозаправочная станция, частная жилая застройка	Калининский административный округ
23	57,159825°	65,490635°	Ул. Ямская	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Жилая застройка, Аллея молодоженов	Калининский административный округ
24	57,126301°	65,554828°	Мельникайте, Валерии Гнаровской	Категория "Магистральные улицы общегородского значения" - "Центральные проспекты", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая застройка, Тюменский рынок	Восточный административный округ

Характеристика исследуемых перекресток в городе Надым

No॒	Географическ	ие координаты	Улицы	Vотегория учин	Бина васположании о области
745	Широта	Долгота	улицы	Категория улиц	Близ расположенные объекты
1	65,53387°	72,509179°	ул. Ленинградский проспект, ул. Комсомольская	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилые здания, Никольская церковь, памятник В. Ремизову, офис компании "Газпром Межрегионгаз Север"
2	65,537585°	72,51704°	ул. Комсомольская	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилые здания, детская библиотека
3	65,539391°	72,521599°	ул. Комсомольская, ул. Зверева	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Администрация Надымского района, жилая застройка, торговый центр "Приполярный"
4	65,543961°	72,531405°	ул. 1-й проезд, проезд безымянный	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая застройка
5	65,538617°	72,538299°	ул. 8-й проезд, ул. 5-й проезд	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Складские помещение, промышленные объекты
6	65,548252°	72,526025°	ул. Топчева, ул. Северная	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая застройка, церковь-часовня Александра Невского
7	65,542938°	72,520274°	ул. 4-й проезд, ул. Кедровая, ул. Топчева	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая и нежилая застройка
8	65,540029°	72,51359°	ул. Ямальская, ул. Кедровая	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая и нежилая застройка

No	Географичесь	кие координаты	Улицы	Vотогория улин	Enno poeno novembro ocu aktivi
145	Широта	Долгота	улицы	Категория улиц	Близ расположенные объекты
9	65,535824°	72,513249°	ул. Сенькина, ул. Полярная	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	
10	65,531363°	72,503258°	ул. Сенькина, ул. Комсомольская	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Медицинское учреждение, жилая застройка
11	65,529641°	72,499502°	ул. Южная, ул. Комсомольская	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая застройка
12	65,531483°	72,494717°	ул. Южная	Улицы и дороги с местным движением - "Улицы местного значения в промышленных и складских районах"	Медицинское учреждение
13	65,529031°	72,509319°	ул. Геологоразведчиков, ул. Строителей	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая застройка, офис компании "Газпром Добыча Надым"
14	65,531661°	72,514931°	ул. Ленинградский проспект, ул. Пионерская	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Парк имени Козлова, жилая застройка, ЗАГС города Надым
15	65,530704°	72,521711°	ул. Ленинградский проспект, проезд безымянный	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Парк имени Козлова, жилая застройка, детский сад "Газовичов"
16	65,531474°	72,531946°	ул. Зверева, ул. Ленинградский проспект	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Транспортное кольцо, жилая застройка, центральный рынок города Надым
17	65,53534°	72,517259°	ул. Парковый проезд	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Жилая застройка, учреждения культуры, офис компании "Газпром Межрегионгаз Север"

No	Географическ	ие координаты	V	Verrenegara	Carro do o vo vo vo vo vo o o carro v
№	Широта	Долгота	Улицы	Категория улиц	Близ расположенные объекты
18	65,532871°	72,538781°	ул. 7-й проезд, ул. Заводская	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Нежилые здания
19	65,527576°	72,54363°	ул. Зверева, бульвар В.В. Стрижева	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах"	Торговый центр, жилая застройка, бульвар В.В. Стрижева
20	65,524106°	72,552953°	ул. Рыжкова, ул. Зверева	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали"	Жилая застройка
21	65,521741°	72,562067°	ул. Зверева, ул. 15-й проезд	Категория "Магистральные улицы общегородского значения" - "Транспортные магистрали", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Учреждения спорта
22	65,526071°	72,557228°	ул. Заводская, ул. 13 проезд	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в жилых районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Памятник первопроходцам-строителям газовых месторождений, гаражные корпоративы, учреждения спорта
23	65,528946°	72,563697°	ул. 13-й проезд, 8-й проезд	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Гаражные корпоративые, офис компании "Когалымнефтегеофизика"
24	65,535855°	72,53155°	ул. 2-й проезд, ул. 5-й проезд	Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах", Категория "Улицы и дороги с местным движением" - "Улицы местного значения в промышленных и складских районах"	Гаражные корпоративые, торговый центр "Династия", "Флагман"

Сводная таблица теоретических выбросов по Тюмени в зимний период 2019 года, утренний учет

	Легк	совые	автом	иобил	и, на	Лег	ковы	е авто	мобил	и на		Mar	ошрут	ные		Гру	/30ВЫ	е авто	мобил	іи мас	сой	Гру	узовы	е авто	мобил	іи мас	сой			6.		10	
		бег	изине,	г/с			I	газу, г	/c		тран	спорт	ные с	редст	ва г/с		бо	льше	3,5 то	нн			N	1енее	12 тон	Н			A	ABTOO	усы, г	/c	
Номер	К	од заг	грязня	ноще	70	1	Сод за	грязн	яюще	70	ŀ	Сод заг	грязня	ноще	Γ 0	ICar						ICar						I/o.					
точки		В	ещест	ва			В	ещест	ва			В	ещест	ва		KO)	цзагр	окнев	щего	вещес	тва	KO)	д загря	икнек	щего	вещес	тва	KOA	(загря	нкнек	ощего	вещес	тва
	301	304	330	337	270	301	304	330	337	415	301	304	330	337	270	301	304	328	330	337	273	301	304	328	330	337	273	301	304	328	330	337	273
1	0,001	0,000	0,000	0,136	0,017	0,000	0,000	0,000	0,068	0,008	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0,00	0,000	0,002	0,000
1	9840	3224	6510	4000	5667	9920	1612	3255	2000	7833	1013	0165	0333	9667	8972	2933	0477	0217	0567	4833	0833	8000	1300	0500	1333	3667	2000	2000	1950	0075	2000	0500	8500
2	0,002 4960	0,000 4056	0,000 8190	0,171 6000	0,022 1000	0,000 3947	0,000 0641	0,000 1295	0,027 1333	0,003 4944	0,000 0907	0,000 0147	0,000 0298	0,006 2333	0,000 8028	0,000 5867	0,000 0953	0,000 0433	0,000 1133	0,000 9667	0,000 1667	0,000 8000	0,000	0,000 0500	0,000 1333	0,001 3667	0,000 2000	0,001 2000	0,000 1950	0,00 0075	0,000 2000	0,002 0500	0,000 8500
	0,002	0,000	0,000	0,176	0,022	0,000	0,000	0,000	0,060	0,007	0,000	0,000	0,000	0,002	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,00	0,000	0,000	0,000
3	5600	4160	8400	0000	6667	8800	1430	2888	5000	7917	0427	0069	0140	9333	3778	6356	1033	0469	1228	0472	1806	6000	0975	0375	1000	0250	1500	2000	0325	0013	0333	3417	1417
4	0,002 4213	0,000 3935	0,000 7945	0,166 4667	0,021 4389	0,000 6613	0,000 1075	0,000 2170	0,045 4667	0,005 8556	0,000 1120	0,000 0182	0,000 0368	0,007 7000	0,000 9917	0,000 4400	0,000 0715	0,000 0325	0,000 0850	0,000 7250	0,000 1250	0,000 6667	0,000 1083	0,000 0417	0,000 1111	0,001 1389	0,000 1667	0,001 0667	0,000 1733	0,00 0067	0,000 1778	0,001 8222	0,000 7556
	0,003	0,000	0,001	0,241	0,031	0,000	0,000	0,000	0,068	0,008	0,000	0,000	0,000	0,011	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,00	0,000	0,002	0,001
5	5147	5711	1533	6333	1194	9973	1621	3273	5667	8306	1600	0260	0525	0000	4167	7333	1192	0542	1417	2083	2083	5333	0867	0333	0889	9111	1333	7333	2817	0108	2889	9611	2278
6	0,004 1867	0,000 6803	0,001 3738	0,287 8333	0,037 0694	0,000 8960	0,000 1456	0,000 2940	0,061 6000	0,007 9333	0,000 1280	0,000 0208	0,000 0420	0,008 8000	0,001 1333	0,000 7822	0,000 1271	0,000 0578	0,000 1511	0,001 2889	0,000 2222	0,000 5333	0,000 0867	0,000	0,000 0889	0,000 9111	0,000 1333	0,001 6000	0,000 2600	0,00 0100	0,000 2667	0,002 7333	0,001 1333
_	0,002	0,000	0,000	0,159	0,020	0,000	0.000	0,000	0.017	0,002	0,000	0,000	0,000	0.007	0.000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0.00	0.000	0,001	0,000
7	3253	3779	7630	8667	5889	2613	0425	0858	9667	3139	1120	0182	0368	7000	9917	1467	0238	0108	0283	2417	0417	0000	1625	0625	1667	7083	2500	0000	1625	0063	1667	7083	7083
8	0,000	0,000	0,000	0,065	0,008	0,000	0,000	0,000	0,009	0,001	0,000	0,000	0,000	0,005	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,00	0,000	0,001	0,000
	9493 0,001	1543 0,000	3115 0,000	2667 0,071	4056 0,009	0.000	0.000	0.000	5333	2278 0,002	0800	0130	0263	5000	7083	1733 0,000	1907 0,000	0867 0,000	2267 0,000	9333	3333 0,000	2000	0325	0125	0333	3417 0,000	0500	0,000	1625 0,000	0.00	0.000	7083	7083 0,000
9	0,001	1681	3395	1333	1611	2613	0425	0858	9667	3139	1067	0,000	0350	3333	9444	1467	0238	0108	0283	2417	0,000	5333	0,000	0333	0,000	9111	1333	2000	1950	0075	2000	0500	8500
10	0,001 7707	0,000 2877	0,000 5810	0,121 7333	0,015 6778	0,000 4747	0,000 0771	0,000 1558	0,032 6333	0,004 2028	0,000 0853	0,000 0139	0,000 0280	0,005 8667	0,000 7556	0,000 6844	0,000 1112	0,000 0506	0,000 1322	0,001 1278	0,000 1944	0,000 4000	0,000 0650	0,000 0250	0,000 0667	0,000 6833	0,000 1000	0,001 4000	0,000 2275	0,00 0088	0,000 2333	0,002 3917	0,000 9917
11	0,002	0,000	0,000	0,190	0,024	0,000	0,000	0,000	0,016	0,002	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0,000	0,000	0,002	0,000	0,000	0,000	0,00	0,000	0,001	0,000
11	7733	4507	9100	6667	5556	2347	0381	0770	1333	0778	0747	0121	0245	1333	6611	7333	1192	0542	1417	2083	2083	2000	1950	0750	2000	0500	3000	8000	1300	0050	1333	3667	5667
12	0,003 3707	0,000 5477	0,001 1060	0,231 7333	0,029 8444	0,000 8533	0,000 1387	0,000 2800	0,058 6667	0,007 5556	0,000 1120	0,000 0182	0,000 0368	0,007 7000	0,000 9917	0,001 1733	0,000 1907	0,000 0867	0,000 2267	0,001 9333	0,000 3333	0,000 9333	0,000 1517	0,000 0583	0,000 1556	0,001 5944	0,000 2333	0,001 8000	0,000 2925	0,00 0113	0,000 3000	0,003 0750	0,001 2750
12	0,002	0,000	0,000	0,189	0,024	0,000	0,000	0,000	0,026	0,003	0,000	0,000	0,000	0,013	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,00	0,000	0,002	0,001
13	7520	4472	9030	2000	3667	3787	0615	1243	0333	3528	1920	0312	0630	2000	7000	5867	0953	0433	1133	9667	1667	2000	0325	0125	0333	3417	0500	6000	2600	0100	2667	7333	1333
14	0,002 9813	0,000 4845	0,000 9783	0,204 9667	0,026 3972	0,000 2667	0,000 0433	0,000 0875	0,018 3333	0,002 3611	0,000 1440	0,000 0234	0,000 0473	0,009 9000	0,001 2750	0,000 2933	0,000 0477	0,000 0217	0,000 0567	0,000 4833	0,000 0833	0,000 2000	0,000	0,000 0125	0,000 0333	0,000 3417	0,000 0500	0,001 0000	0,000 1625	0,00 0063	0,000 1667	0,001 7083	0,000 7083
1.5	0,003	0,000	0,001	0,225	0,029	0,000	0,000	0,000	0,042	0,005	0,000	0,000	0,000	0,007	0,000	0,001	0,000	0,000	0,000	0,002	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0,00	0,000	0,002	0,000
15	2800	5330	0763	5000	0417	6133	0997	2013	1667	4306	1067	0173	0350	3333	9444	2222	1986	0903	2361	0139	3472	1333	1842	0708	1889	9361	2833	2667	2058	0079	2111	1639	8972
16	0,003	0,000	0,001	0,224	0,028	0,000	0,000	0,000	0,068	0,008	0,000	0,000	0,000	0,016	0,002	0,001	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0,000	0,000	0,002	0,000	0,001	0,000	0,00	0,000	0,002	0,001
	2640 0.001	5304 0,000	0710	4000 0,131	9000	9973	0,000	3273 0,000	5667 0,015	8306 0,002	2400 0,000	0390	0788	5000	0,000	1733 0,000	1907 0,000	0867 0,000	2267 0,000	9333	3333 0,000	2667 0,000	2058 0,000	0792	0,000	1639 0,000	3167 0,000	0,000	2600 0,000	0100	2667 0,000	7333	0,000
17	9147	3111	6283	6333			0373						0000	0000	0000	0000				0000			0000	0000				0000					
18	0,001 6960	0,000 2756	0,000 5565	0,116 6000	0,015 0167	0,000 5387	0,000 0875			0,004 7694	0,000 1067	0,000 0173			0,000	0,001 3200	0,000 2145	0,000	0,000 2550	0,002 1750		0,001 2000	0,000 1950	0,000 0750	0,000 2000	0,002	0,000 3000	0,000 8000	0,000 1300	0,00 0050	0,000 1333	0,001 3667	0,000 5667
	0,002	0,000	0,000	0,159	0,020	0,000				0,004	0,000	0,000				0,000	0,000	0975		0,000	0,000		0,000		0,000	0500	0,000	0,000	0,000				+
19	3147	3761	7595	1333	4944	4640	0754	1523	9000	1083	0640	0104	0210	4000	5667	4400	0715	0325	0850	7250	1250	0000	0000	0000	0000	0000	0000	4000	0650	0025	0667	6833	
20	0,003	0,000	0,001	0,214	0,027		0,000			0,006	0,000	0,000			0,002		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,002	0,000			0,004	
	1253 0,000	5079 0,000	0255	8667 0,046	6722 0,005	7627 0,000	1239 0,000	2503 0,000		7528 0,001	2880 0,000	0468	0945	8000	5500 0,000	0,000	0238	0108	0283	2417 0,001	0417	8000 0,000	1300 0,000	0500	1333 0,000	3667 0,000	2000 0,000	4000 0,001	3900 0,000	0150	4000 0,000	1000 0,001	7000
21	6720	1092	2205	2000	9500	1920	0312			7000	0587	0095	0193	0333	5194	7822	1271	0578	1511	2889	2222	5333	0867	0333	0889	9111	1333	0000		0063	1667	7083	7083
22	0,002	0,000	0,000	0,184	0,023	0,000	0,000	0,000	0,037	0,004	0,000	0,000	0,000	0,004	0,000	0,002	0,000	0,000	0,000	0,003	0,000	0,001	0,000	0,000	0,000	0,003	0,000	0,000	0,000	0,00	0,000	0,000	1 1
	6880 0,001	4368 0,000	8820 0,000	8000 0,124	8000 0,016	5440 0,000	0884	1785 0,000		8167 0,001	0587 0,000	0095	0193		5194 0,000	0533	3337 0,000	1517 0,000	3967 0,000	3833 0,001	5833 0,000	8000 0,000	2925 0,000	1125 0,000	3000 0,000	0,001	4500 0,000	4000 0,001	0650		0,000	6833 0,002	
23	8133	2947	5950	6667	0,010		0,000			8417	0480	0,000		3000	4250	8311	1351	0,000	1606	3694	2361	9333	1517	0583	1556	5944	2333	5333		0096	2556	,	· ·
24	0,001	0,000	0,000	0,094	0,012	0,000	0,000	0,000	0,027	0,003	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,00	0,000	0,001	0,000
47	3760	2236	4515	6000	1833	3947	0641	1295	1333	4944	1013	0165	0333	9667	8972	6844	1112	0506	1322	1278	1944	7333	1192	0458	1222	2528	1833	8000	1300	0050	1333	3667	5667

Сводная таблица теоретических выбросов по Тюмени в зимний период 2019 года, вечерний учет

	Легк	совые	автом	мобил	и, на	Легі	ковы	е авто	мобил	и на	Mapi	шрутн	ые тра	нспор	тные	Гру	узовы	е авто	мобил	и мас	сой	Гру	/30ВЫ	е авто	мобил	пи мас	сой					1	
		бег	изине,	г/с			1	газу, г	·/c			сре	дства	г/с			бо	льше	3,5 тог	нн			M	іенее 1	2 тон	IH			A	втобу	/сы, г/	c	
Номер точки	К		грязня ещест		Γ 0	К	Сод за	•	яюще	Γ 0	Код з	агрязн	яюще	го веш	цества	Код	д загря	окне	ощего 1	вещес	тва	Код	(загря	окнек	щего	вещес	тва	Код	загря	зняю	щего	вещес	ства
	301	304	330	337	2704	301	304	330	337	415	301	304	330	337	2704	301	304	328	330	337	2732	301	304	328	330	337	2732	301	304	328	330	337	2732
1	0,0021	0,0003	0,0006	0,1444	0,0186	0,0005	0,0000	0,0001	0,0374	0,0048	0,00005	0,00000	0,00001	0,00366	0,00047	0,00078	0,00012	0,00005	0,00015	0,00128	0,00022	0,0006	0,0000	0,0000	0,0001	0,0010	0,0001	0,0004	0,0000	0,0000	0,0000	0,0007	0,0003
1	013	415	895	667	056	440	884	785	000	167	33	87	75	67	22	22	71	78	11	89	22	000	975	375	000	250	500	667	758	29	778	972	306
2			0,0007	0,1525	· ·		0,0001		0,0440	_ ′		0,00005	0,00011	0,02420	-	′	-,	0,00005	-,	0,00112	0,00019	0,0004	′	- ,	- ,	0,0006	0,0001	0,0008	0,0001	0,0000	- ,	0,0013	0,0005
	187	605	280	333	444	400	040	100	000	667	20	72	55	00	67	44	12	06	22	78	44	000	650	250	667	833	000	000	300	50	333	667	667
3	0,0026 507	0,0004 307	0,0008 698	0,1822 333	694	0,0008	0,0001	695	0,0564	0,0072 722	0,00002 67	0,00000 43	0,00000	0,00183 33	0,00023	0,00102 67	0,00016 68	58	0,00019	0,00169 17	0,00029	0,0004	0,0000 650	250	0,0000 667	0,0006 833	0,0001	0,0002	0,0000 325	0,0000	0,0000	0,0003	0,0001
	0,0031	0,0005			0,0282		0.0001		0.0436	0,0056		0,00002	0,00004	0,00880			0,00008			0,00088		0,0003				0.0005	0.000	0.0013	0.0002	0.0000		0.0022	0.0009
4	893	183	465	667	389	347	031	083	333	194	80	08	20	00	33	78	74	97	39	61	28	333	542	208	556	694	833	333	167	83	222	778	444
		0,0007	0,0015			0,0007			0,0509	0,0065	0,00019	0,00003		0,01320			0,00012	0,00005		0,00128		0,0006		0,0000		0,0010	0,0001	0,0016		0,0001		0,0027	0,0011
5	413	705	558	667	806	413	205	433	667	639	20	12	30	00	00	22	71	78	11	89	22	000	975	375	000	250	500	000	600	00	667	333	333
6	0,0047	0,0007	0,0015	0,3278	0,0422	0,0006	0,0001	0,0002	0,0462	0,0059	0,00006	0,00001	0,00002	0,00440	0,00056	0,00063	0,00010	0,00004	0,00012	0,00104	0,00018	0,0008	0,0001	0,0000	0,0001	0,0013	0,0002	0,0014	0,0002	0,0000	0,0002	0,0025	0,0010
U	680	748	645	000	167	720	092	205	000	500	40	04	10	00	67	56	33	69	28	72	06	000	300	500	333	667	000	667	383	92	444	056	389
7	0,0026	0,0004		0,1840		-,	0,0001		0,0553	- ,	0,00008	0,00001	0,00002	· ·			· ·	0,00003		0,00080	1	0,0004	- ,	0,0000	- ,	- ,	0,0001	0,0009	0,0001	0,0000	- ,	0,0015	0,0006
-	773	351	785	667	056	053	309	643	667	306	53	39	80	67	56	89	94	61	44	56	89	667	758	292	778	972	167	333	517	58	556	944	611
8	0,0008	0,0001 300	0,0002 625	0,0550	833	0,0001	173	350	0,0073	0,0009 444	0,00004 27	0,00000 69	0,00001	0,00293	0,00037 78	0,00068 44	l ′	0,00005 06	0,00013	0,00112 78	0,00019	0,0004	758	0,0000 292	0,0000 778	972	0,0001	0,0002 667	0,0000	0,0000 17	0,0000	0,0004 556	0,0001
	0,0013	0,0002	0,0004		0,0115		0.0000			0,0023		0,00003	0.00006				0.00007	0,00003		0,00072	0,00012	667 0.0000				0.0000	167 0.0000	0.0019	0.0003	0.0001		0.0033	0.0013
9	013	115	270	667	222	667	433	875	333	611	20	12	30	0,01320	00	00	15	25	50	50	50	000	000	000	000	000	000	333	142	21	222	0,0033	694
10		0,0002		0,1158					0.0579	0,0074		0,00002	0,00004	0,00990			0,00002			0,00024		0,0002				0.0003	0.0000	0.0018		0.0001		0.0030	0.0012
10	853	739	530	667	222	427	369	765	333	611	40	34	73	00	50	67	38	08	83	17	17	000	325	125	333	417	500	000	925	13	000	750	750
11	0,0026	0,0004	0,0008	0,1800	0,0231	0,0005	0,0000	0,0001	0,0344	0,0044	0,00006	0,00001	0,00002	0,00440	0,00056	0,00117	0,00019	0,00008	0,00022	0,00193	0,00033	0,0003	0,0000	0,0000	0,0000	0,0005	0,0000	0,0010	0,0001	0,0000	0,0001	0,0017	0,0007
11	187	255	593	333	861	013	815	645	667	389	40	04	10	00	67	33	07	67	67	33	33	333	542	208	556	694	833	000	625	63	667	083	083
12	0,0042	0,0006			0,0375		0,0000		0,0374	0,0048		0,00002	0,00005	-	0,00155		0,00015	· ·		0,00153	0,00026	0,0011	0,0001	- ,	- ,	0,0019	0,0002	0,0014	0,0002	0,0000	-,	0,0023	0,0009
	400	890	913	000	417	440	884	785	000	167	60	86	78	00	83	89	09	86	94	06	39	333	842	708	889	361	833	000	275	88	333	917	917
13	0,0032 053	0,0005	0,0010 518	0,2203			0,0001		0,0597	0,0076 972	0,00013	0,00002	0,00004	0,00953		0,00044		0,00003	0,00008 50	0,00072	0,00012	0,0003	- ,	0,0000 208	-,	0,0005	0,0000	0,0016	0,0002	-,	0,0002	-,	0,0011
		209 0,0004		667 0,1796	806 0,0231	693	413 0.0001	853	667	0,0061	87 0,00010	25 0,00001	55 0,00003	33 0,00733	78	00 0,00068	15	25		50 0,00112	50	333 0,0004	542		556 0,0000	694 0,0007	833 0.0001	667 0.0010	708	0.0000	778	472 0.0017	806 0.0007
14	133	247	575	667	389	987	135	293	333	861	67	73	50	33	44	44	12	0,00003	22	78	44	667	758	292	778	972	167	000	625	63	667	0,0017	0,0007
4 =		0,0005		0,2449					0.0425			0,00002				0,00083	0.00013	0.00006			7.7	0,0006			0.0001	0.0011	0.0001	0.0009	0.0001	0.0000	0.0001	0.0015	0.0006
15	627	789	690	333	444	187	005	030	333	778	87	25	55	33	78	11	51	14	06	94	61	667	083	417	111	389	667	333	517	58	556	944	611
16	0,0032	0,0005	0,0010	0,2247	0,0289	0,0008	0,0001	0,0002	0,0583	0,0075	0,00012	0,00002	0,00004	0,00880	0,00113	0,00102	0,00016	0,00007	0,00019	0,00169	0,00029	0,0010	0,0001	0,0000	0,0001	0,0017	0,0002	0,0016	0,0002	0,0001	0,0002	0,0028	0,0011
10	693	313		667	472	480	378	783	000	083	80	08	20	00	33	67	68	58	83	17	17	000	625	625	667	083	500	667	708	04	778	472	806
17	0,0020	0,0003	0,0006	0,1426	0,0183	0,0004	0,0000		0,0286			0,00002	0,00004	0,00880		0,00073	0,00011	0,00005			,		0,0000			0,0009	,	· ·		0,0000	0,0001	0,0017	0,0007
	747	371	808	333	694	160	676	365	000	833	80	08	20	00	33	33	92	42	17	83	83	333	867	333	889	111	333	000	625	63	667	083	083
18				0,0968			1		1						0,00141																	0,0009	
	080	0.0004	620	0.2060	0.0265	0.0014	728	470	000	0.0132	00 0,00024	0.00003	25 0,00007	00	67	0,00063	71	0.00004	0.00012	0.00104	0.00018	000	975	375	000	250 0,0009	500	333	867	0.0001	0.0005	0.0051	778
19	0,0029 973	871	835	667	389	987	435	918	333	694	00	90	88	00,01630	50	56	33	69	28	72	0,00018	333	867	333	889	111	333	000	875	88	000	250	250
•	0,0024								0,0355				0,00004			0,00058										0,0006					0,0001		0.0007
20	693	013	103	667	639	173	841	698	667	806	80	08	20	00	33	67	53	33	33	67	67	000	650	250	667	833	000	000	625	63	667	083	083
21	0,0016	0,0002	0,0005	0,1151	0,0148	0,0008	0,0001	0,0002	0,0575	0,0074	0,00008	0,00001	0,00002	0,00550	0,00070	0,00044	0,00007	0,00003	0,00008	0,00072	0,00012	0,0006	0,0000		0,0001	0,0010	0,0001	0,0010		0,0000	0,0001	0,0017	0,0007
21	747	721	495	333	278	373	361	748	667	139	00	30	63	00	83	00	15	25	50	50	50	000	975	375	000	250	500	000	625	63	667	083	083
22	0,0017	0,0002	0,0005	0,1195		0,0008	1		0,0597		0,00008	0,00001	0,00002	0,00586	0,00075	0,00044	0,00007	0,00003				0,0010		1		0,0018				0,0000	0,0000	0,0006	0,0002
	387	825	705	333	944	693	413	853	667	972	53	39	80	67	56	00	15	25	50	50	50	667	733	667	778	222	667	000	650	25	667	833	833
23				1		-							0,00003	-		0,00034							1			0,0006		1		· ·			
	640	404	835	000	500	320	702	418	000	250	20	82	68	00	17	22	56	53	61	39	72	000	650	250	667	833	000	000	000	00	000	000	000

Haven	Легк	овые бен	автом зине,		и, на	Легн		автом азу, г/	,	и на	Mapı		ые тра едства	, -	тные	Гру	,	е авто			сой	Гру	зовые м		мобил 2 тон		сой		A	втобу	сы, г/	'c	
Номер точки	Код загрязняющего вещества				0	К		рязня ещесті		10	Код за	агрязн	іяюще	го веш	ества	Код	д загр	окнек	щего і	вещест	гва	Код	загря	ЭНЯЮ	щего	вещес	тва	Код	загря	окне	щего	вещес	тва
	301	304	330	337	2704	301	304	330	337	415	301	304	330	337	2704	301	304	328	330	337	2732	301	304	328	330	337	2732	301	304	328	330	337	2732
24	0,0013 440	0,0002 184	0,0004 410	0,0924 000	0,0119 000	0,0006 720	0,0001 092	0,0002 205	0,0462 000	0,0059 500	0,00008	0,00001 30	0,00002 63	0,00550 00	0,00070 83	0,00029 33	0,00004 77	0,00002 17	0,00005 67	0,00048 33	0,00008	0,0003 333	0,0000 542	0,0000 208	0,0000 556	0,0005 694	0,0000 833	0,0014 000	0,0002 275	0,0000	0,0002 333	0,0023 917	0,0009 917

Сводная таблица теоретических выбросов по Тюмени в зимний период 2020 года, утренний учет

обусы, г/с яющего вещества 28 330 337 273 000 0,0001 0,0014 0,000 4 444 806 139 000 0,0001 0,0019 0,000 1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
28 330 337 273 000 0,0001 0,0014 0,000 4 444 806 139 000 0,0001 0,0019 0,000 1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
28 330 337 273 000 0,0001 0,0014 0,000 4 444 806 139 000 0,0001 0,0019 0,000 1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
28 330 337 273 000 0,0001 0,0014 0,000 4 444 806 139 000 0,0001 0,0019 0,000 1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
000 0,0001 0,0014 0,000 4 444 806 139 000 0,0001 0,0019 0,000 1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
4 444 806 139 000 0,0001 0,0019 0,000 1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
000 0,0001 0,0019 0,000 1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0028 0,002 3 667 083 083
1 889 361 028 000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
000 0,0000 0,0005 0,000 1 556 694 361 001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
001 0,0002 0,0028 0,001 4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
4 778 472 806 002 0,0005 0,0058 0,002 3 667 083 083
002 0,0005 0,0058 0,002 3 667 083 083
3 667 083 083
002 0,0007 0,0071 0,002
3 000 750 750
000 0,0001 0,0017 0,000
3 667 083 083
000 0,0001 0,0013 0,000
0 333 667 667 001 0.0002 0.0029 0.001
8 889 611 278
001 0,0002 0,0027 0,001
0 667 333 333
001 0,0002 0,0027 0,001
0 667 333 333 001 0.0004 0.0044 0.001
3 33 417 417
001 0,0003 0,0030 0,001
3 000 750 750
000 0,0002 0,0020 0,000
5 000 500 500
001 0,0004 0,0047 0,001 5 667 833 833
000 0,0002 0,0023 0,000
8 333 917 917
000 0,0002 0,0020 0,000
000 0,0001 0,0011 0,000 2 111 389 722
000 0,0002 0,0022 0,000
000 0,0002 0,0022 0,000
000 0,0002 0,0021 0,000
9 111 639 972 000 0,0000 0,0007 0,000
,000 0,0000
9 778 972 306 000 0,0001 0,0017 0,000
88 00 75 00 42 00 83 00 79

Цомор		_	авто нзине		и, на	Легі	совые Г	автоі азу, г/	,	и на	Mapı		ые тра едства	, -	гные	Гру		е авто льше			сой	Гру	зовые а		лобилі 2 тонн		сой		A	втобу	⁄сы, г	'c	
Номер точки	код загрязняющего вещества				Г0	К	од заг ве	рязня ещест		0	Код з	агрязн	іяющеі	го вещ	ества	Код	ц загря	өкнек	щего і	вещест	гва	Код	загряз	ІЭКН	цего в	вещес	гва	Код	загря	зняю	щего	вещес	тва
	301	304	330	337	2704	301	304	330	337	415	301	304	330	337	2704	301	304	328	330	337	2732	301	304	328	330	337	2732	301	304	328	330	337	2732
24	0,0021	0,0003	0,0007	0,1466	0,0188	- ,	- ,	- ,	0,0498	- ,	0,00012	-,	0,00004	0,00880	0,00113	0,00058	0,00009	0,00004	0,00011	0,00096	0,00016	.,	0,00013 0,	00005	0,00013),00136	0,00020	0,0012		0,0000	0,0002	0,0021	0,0008
	333	467	000	667	889	253	179	380	667	222	80	08	20	00	33	67	53	33	33	67	67	00	00	00	33	67	00	667	058	79	111	639	972

Сводная таблица теоретических выбросов по Тюмени в зимний период 2020 года, вечерний учет

	Легк	овые	автом	иобил	и, на	Лег	ковые	е авто	мобил	и на		Mar	ошрут	ные		Гру		е авто			сой	Гру		е авто			сой		<u> </u>	ътобу	усы, г	/c	
TT			ізине,			_		газу, г				спорт					бо	льше	3,5 то	НН			N	1енее	12 тон	Н				LDT UU,	усы, т		
Номер	К	од заг	грязня	ющеі	0	F	Сод заі	грязня	яющеі	Γ 0	ŀ	Сод заі	грязня	юще	Γ 0	Кол	і загрэ	окне	шего	вешес	тва	Кол	і загря	овне	шего	вешес	тва	Кол	загря	зняю	шего	вещес	тва
точки		В	ещест	ва			В	ещест	ва	1		В	ещест	ва	1	110,	, sur p	1	1	1		110,	, sur p	1	1	1		110,	, sur pr	1			_
	301	304	330	337	270 4	301	304	330	337	415	301	304	330	337	270 4	301	304	328	330	337	273	301	304	328	330	337	273	301	304	328	330	337	273
1	0,001 4080	0,000 2288	0,000 4620	0,096 8000	0,012 4667	0,000 6133	0,000 0997	0,000 2013	0,042 1667	0,005 4306	0,000 0800	0,000 0130	0,000 0263	0,005 5000	0,000 7083	0,000 4400	0,000 0715	0,000 0325	0,000 0850	0,000 7250	0,000 1250	0,000 7333	0,000 1192	0,000 0458	0,000 1222	0,001 2528	0,000 1833	0,001 0000	0,000 1625	0,00 0063	0,000 1667	0,001 7083	0,000 7083
2	0,002	0,000	0,000	0,159	0,020	0,000	0,000	0,000	0,043	0,005	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,001	0,000
3	3253 0,003	3779 0,000	7630 0,000	8667 0,209	5889 0,026	6347 0,000	1031 0,000	2083 0,000	6333 0,064	6194 0,008	0,000	0121	0245	0,002	0,000	5867 0,000	0953	0433	1133 0,000	9667 0,001	1667 0,000	3333 0,000	0542	0208	0556	5694 0,000	0833	9333	1517 0,000	0,00	1556 0,000	5944 0,000	0,000
	0400	4940 0,000	9975 0,000	0000	9167 0,026	9440	0,000	3098	9000	3583 0,008	0427	0069	0140	9333	3778 0,001	6844 0,000	1112 0,000	0506	1322 0,000	1278 0,001	1944 0,000	4667 0,000	0,000	0292	0,000	7972	1167 0,000	1333 0,001	0217	0,00	0222	2278 0.003	0,001
4	9867 0,004	4853 0,000	9800 0,001	3333 0,276	4444 0,035	0133	1647 0,000	3325	6667 0,066	9722 0,008	1440 0,000	0234	0473	9000	2750 0,002	8800 0,001	1430 0,000	0650	1700 0,000	4500 0,001	2500 0,000	3333	0542	0208	0556	5694 0,001	0833	8000 0,003	2925 0,000	0113	3000	0750 0.005	2750 0,002
5	0160	6526	3178	1000	5583	9707	1577	3185	7333	5944	3200	0520	1050	0000	8333	0267	1668	0758	1983	6917	2917	8000	1300	0500	1333	3667	2000	4000	5525	0213	5667	8083	4083
6	0,003 9947	0,000 6491	0,001 3108	0,274 6333	0,035 3694	0,000 7200	0,000 1170	0,000 2363	0,049 5000	0,006 3750	0,000 2560	0,000 0416	0,000 0840	0,017 6000	0,002 2667	0,001 3200	0,000 2145	0,000 0975	0,000 2550	0,002 1750	0,000 3750	0,000 8000	0,000 1300	0,000 0500	0,000 1333	0,001 3667	0,000 2000	0,004 2000	0,000 6825	0,00 0263	0,000 7000	0,007 1750	0,002 9750
7	0,002 0800	0,000 3380	0,000 6825	0,143 0000	0,018 4167	0,000 7093	0,000 1153	0,000 2328	0,048 7667	0,006 2806	0,000 1120	0,000 0182	0,000 0368	0,007 7000	0,000 9917	0,000 3911	0,000 0636	0,000 0289	0,000 0756	0,000 6444	0,000 1111	0,000 3333	0,000 0542	0,000 0208	0,000 0556	0,000 5694	0,000 0833	0,001 0667	0,000 1733	0,00 0067	0,000 1778	0,001 8222	0,000 7556
8	0,000 5600	0,000 0910	0,000 1838	0,038 5000	0,004 9583	0,000 1173	0,000 0191	0,000 0385	0,008 0667	0,001 0389	0,000 0853	0,000 0139	0,000 0280	0,005 8667	0,000 7556	0,000 5378	0,000 0874	0,000 0397	0,000 1039	0,000 8861	0,000 1528	0,000 8667	0,000 1408	0,000 0542	0,000 1444	0,001 4806	0,000 2167	0,000 6667	0,000 1083	0,00 0042	0,000 1111	0,001 1389	0,000 4722
9	0,002	0,000	0,000	0,142	0,018	0,000	0,000	0,000	0,042	0,005	0,000	0,000	0,000	0,009	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,002	0,000	0,001	0,000	0,00	0,000	0,003	0,001
10	0747 0,002	3371 0,000	6808 0,000	6333 0,161	3694 0,020	6187 0,000	1005 0,000	2030 0,000	5333	4778 0,005	1387 0,000	0225	0455	5333	2278 0,000	5867 0,000	0953	0433	1133 0,000	9667 0,000	1667 0,000	2000	1950 0,000	0750 0,000	2000 0,000	0500	3000 0,000	9333	3142 0,000	0,00	3222 0,000	3028 0,002	3694 0,001
	3467 0,003	3813 0,000	7700 0,001	3333 0,224	7778 0,028	5867 0,000	0,000	1925 0,000	3333 0,058	1944 0,007	1067 0,000	0173	0350	3333 0,008	9444	5867 0,001	0953	0433	1133 0,000	9667 0,001	1667 0,000	5333	0867	0333	0,000	9111	1333	6000 0,001	2600 0,000	0100	2667 0,000	7333 0,002	1333 0,001
11	2587 0,003	5295 0,000	0693 0,001	0333	8528 0,032	8480 0,000	1378 0,000	2783 0,000	3000 0,057	5083	1280 0,000	0208	0420	8000 0.013	1333	0756 0,001	1748 0,000	0794 0,000	2078 0,000	7722 0,001	3056 0,000	9333	1517 0,000	0583	1556 0,000	5944 0,000	2333	7333 0,002	2817 0,000	0108	2889 0,000	9611 0,004	2278 0,001
12	7227	6049	2215	9333	9611	8373	1361	2748	5667	4139	1920	0312	0630	2000	7000	1733	1907	0867	2267	9333	3333	5333	0867	0333	0889	9111	1333	6000	4225	0163	4333	4417	8417
13	0,003 4133	0,000 5547	0,001 1200	0,234 6667	0,030 2222	0,000 9867	0,000 1603	0,000 3238	0,067 8333	0,008 7361	0,000 1760	0,000 0286	0,000 0578	0,012 1000	0,001 5583	0,000 7333	0,000 1192	0,000 0542	0,000 1417	0,001 2083	0,000 2083	0,000 2667	0,000 0433	0,000 0167	0,000 0444	0,000 4556	0,000 0667	0,001 8000	0,000 2925	0,00 0113	0,000 3000	0,003 0750	0,001 2750
14	0,002 9973	0,000 4871	0,000 9835	0,206 0667	0,026 5389	0,000 9600	0,000 1560	0,000 3150	0,066	0,008 5000	0,000 1280	0,000 0208	0,000 0420	0,008 8000	0,001 1333	0,000 4889	0,000 0794	0,000 0361	0,000 0944	0,000 8056	0,000 1389	0,000 4667	0,000 0758	0,000 0292	0,000 0778	0,000 7972	0,000 1167	0,001 2667	0,000 2058	0,00 0079	0,000 2111	0,002 1639	0,000 8972
15	0,003 5147	0,000 5711	0,001 1533	0,241 6333	0,031 1194	0,001 0453	0,000 1699	0,000 3430	0,071 8667	0,009 2556	0,000 1600	0,000 0260	0,000 0525	0,011 0000	0,001 4167	0,000 7333	0,000 1192	0,000 0542	0,000 1417	0,001 2083	0,000 2083	0,001	0,000 1625	0,000 0625	0,000 1667	0,001 7083	0,000 2500	0,002 8000	0,000 4550	0,00 0175	0,000 4667	0,004 7833	0,001 9833
16	0,003	0,000	0,001	0,240	0,030	0,000	0,000	0,000	0,064	0,008	0,000	0,000	0,000	0,013	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,00	0,000	0,002	0,000
17	4987 0,002	5685 0,000	1480 0,000	5333 0,161	9778 0,020	9440	1534 0,000	3098 0,000	9000	3583 0,007	1920 0,000	0312	0630	2000 0,009	7000	5867 0,000	0953	0433	1133 0,000	9667 0,000	1667 0,000	4000 0,001	0650	0250 0,000	0667	6833 0,002	1000	4000 0,001	2275 0,000	0,00	2333 0,000	3917 0,002	9917 0,000
	3467 0,000	3813 0,000	7700 0,000	3333 0,059	7778 0,007		0,000			7917 0,001					1806 0,000		0,000	0361		8056 0,001	1389 0,000		1950 0,000	0750 0,000	2000 0,000	0500	3000 0,000	3333 0,000	0,000			2778 0,001	
18	8587 0,002	1395 0,000	2818 0,000	0333	6028 0,021	1387 0,000	0225	0455	5333	2278 0,007	0267	0043	0088	8333	2361	9778 0,000	1589 0,000	0722	1889 0,000	0,000	2778 0,000	4667	2383	0917	2444	5056 0,002	3667 0,000	6667 0,001		0042	1111	1389 0,002	4722
19	4640	4004	8085	4000	8167	8427	1369	2765	9333	4611	0853	0139	0280	8667	7556	4400	0715	0325	0850	7250	1250	2000	1950	0750	2000	0500	3000	3333	2167	0083	2222	2778	9444
20	0,001 8720	0,000 3042	0,000 6143	0,128 7000	0,016 5750	0,000 4693	0,000 0763	0,000 1540	0,032 2667	0,004 1556	0,000 1173	0,000 0191	0,000 0385	0,008 0667		0,000 5378	0,000 0874	0,000 0397	0,000 1039	0,000 8861	0,000 1528	0,000 2667	0,000 0433	0,000 0167	0,000 0444	0,000 4556	0,000 0667	0,001 2667	0,000 2058	0,00 0079	0,000 2111	0,002 1639	
21	0,001 8133	0,000 2947	0,000 5950	0,124 6667	0,016 0556	0,000 6293	0,000 1023			0,005 5722	0,000 1067	0,000 0173	0,000 0350		0,000 9444	0,000 6844	0,000 1112	0,000 0506	0,000 1322	0,001 1278	0,000 1944	0,000 4000	0,000 0650	0,000 0250	0,000 0667	0,000 6833	0,000 1000	0,001 2000	0,000	0,00 0075	0,000 2000	0,002 0500	
22		0,000 5798	0,001 1708	0,245 3000	0,031 5917	0,000 8213	0,000 1335	0,000			0,000 1013	0,000 0165				0,001 1733	0,000 1907	0,000 0867	0,000 2267	0,001 9333	0,000	0,000 9333	0,000 1517	0,000 0583	0,000 1556	0,001 5944	0,000 2333		0,000			0,001 0250	0,000
23	0,002	0,000	0,000	0,144	0,018	0,000	0,000	0,000	0,053	0,006	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,001	0,000
24	1067 0,002	3423 0,000	6913 0,000	0,152	6528 0,019		1265 0,000	0,000	0,038	8944 0,005	0,000	0121				7822 0,000	0,000	0578 0,000	1511 0,000	2889 0,001	2222 0,000	4667 0,000	0,000	0,000	0,000	7972 0,000	1167 0,000	9333 0,001	0,000		0,000	5944 0,002	0,000
⊿ ≒	2187	3605	7280	5333	6444	5653	0919	1855	8667	0056	1173	0191	0385	0667	0389	6356	1033	0469	1228	0472	1806	5333	0867	0333	0889	9111	1333	4000	2275	0088	2333	3917	9917

Сводная таблица теоретических выбросов по Надыму в зимний период 2019 года, утренний учет

	Легк	совые	автом	мобил	и, на	Легі	ковые		мобил				ые тра		тные				мобил			1		е авто			ссой						
		бег	нзине,	г/с			Ι	газу, г	/c		_		едства	-		1	бо	льше	3,5 то	нн				тенее 1					A	втобу	/сы, г/	'c	
Номер	К	ол заг	грязня	ноше	Γ0	К		•	яюще	Γ0																							
точки			ещест					ещест			Код з	агрязн	іяюще	го вец	цества	Код	д загр	ЭКНЕВ	щего 1	вещес	тва	Код	ц загря	окнев	щего	вещес	ства	Код	загря	ЮКНЕ	щего і	вещес	ства
	301	304	330		2704	301	304	330	337	415	301	304	330	337	2704	301	304	328	330	337	2732	301	304	328	330	337	2732	301	304	328	330	337	2732
		0,0001		0,0454					0,0227			0,00001							0,00001			0,0002		0.0000			0.0000			0.0000		0.0010	
1	613	0,0001	170	667	556	307	537	085	333	278	40	04	10	00	67	78	59	72	89	11	78	667	433	167	444	556	667	000	975	38	000	250	250
2	0,0008	0,0001	0,0002	0,0572	0,0073	0,0004	0,0000	0,0001	0,0286	0,0036	0,00011	0,00001	0,00003	0,00770	0,00099	0,00019	0,00003	0,00001	0,00003	0,00032	0,00005	0,0002	0,0000	0,0000	0,0000	0,0004	0,0000	0,0004	0,0000	0,0000	0,0000	0,0006	0,0002
	320	352	730	000	667	160	676	365	000	833	20	82	68	00	17	56	18	44	78	22	56	667	433	167	444	556	667	000	650	25	667	833	833
3	0,0008	0,0001	0,0002	0,0586	- ,	- ,	0,0000	- ,	0,0293	′	0,00013	0,00002	0,00004	0,00916	0,00118	′	′	0,00002		· ·	· /	0,0002	-,		0,0000		0,0000	- ,	0,0001	0,0000	- ,	0,0018	0,0007
	533 0,0004	387 0,0000	800 0,0001	667 0,0303	556	267	693	400	333 0,0151	778 0,0019	33 0,00005	17 0,00000	38 0,00001	67 0,00366	06	22 0,00014	56	53 0,00001	61	39 0,00024	72	000	325	0,0000	333	417	500	0.0000	733	0.0000	778 0.0000 (222	0.0000
4	409	716	447	111	0,0039	204	358	723	556	519	33	87	75	67	22	67	38	0,00001	83	17	17	0004	650	250	667	833	000	000	000	0,0000	0,0000	0000	0,000
_	0,0003	0,0000	0,0001		0,0033	0,0001	0,0000					0,00000	0,00000	0,00183	0,00023			0,00002		0,00064	0,00011	0,0000			0,0000		0,0000		0,0000	0,0000		0,0005	0,0002
5	769	612	237	111	370	884	306	618	556	685	67	43	88	33	61	11	36	89	56	44	11	667	108	042	111	139	167	333	542	21	556	694	361
6	0,0003	0,0000	0,0001	0,0237	0,0030	0,0001	0,0000		0,0118	0,0015	0,00007	0,00001	0,00002	0,00513	0,00066	· ·	0,00000	0,00000	· /	0,00008	0,00001	0,0000	0,0000	-,	0,0000	0,0000	0,0000	0,0004	0,0000	0,0000	0,0000	0,0006	0,0002
	449	560	132	111	537	724	280	566	556	269	47	21	45	33	11	89	79	36	94	06	39	000	000	000	000	000	000	000	650	25	667	833	833
7	0,0003 840	0,0000 624	0,0001	0,0264	0,0034	0,0001 920	312	630	0,0132	0,0017	0,00003	0,00000 61	0,00001	0,00256 67	0,00033	0,00004 89	0,00000 79	0,00000 36	0,00000 94	0,00008 06	0,00001	0,0003	542	0,0000	556	694	0,0000	0,0003	0,0000 542	0,0000	0,0000	0,0005 694	0,0002 361
	0,0004	0,0000			0,0038		0.0000			0.0019		0,00000	0,00000	0,00183	0,00023			0.00002		0,00064	0,00011	0.0000		0,0000		0.0001	0.0000		0.0000	0.0000	0.0000		0.0002
8	302	699	412	778	093	151	350	706	889	046	67	43	88	33	61	11	36	89	56	44	11	667	108	042	111	139	167	333	542	21	556	694	361
9	0,0003	0,0000	0,0001	0,0237	0,0030	0,0001	0,0000	0,0000	0,0118	0,0015	0,00007	0,00001	0,00002	0,00513	0,00066	0,00004	0,00000	0,00000	0,00000	0,00008	0,00001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0004	0,0000	0,0000	0,0000	0,0006	0,0002
9	449	560	132	111	537	724	280	566	556	269	47	21	45	33	11	89	79	36	94	06	39	000	000	000	000	000	000	000	650	25	667	833	833
10	0,0004		0,0001		0,0036	0,0002	- ,	0,0000	0,0141	0,0018	0,00010	0,00001	0,00003	0,00733	0,00094	· ·	′	0,00000	· /	0,00000	0,00000	0,0001	-,	-,	0,0000	0,0002	0,0000	0,000 1	0,0000	0,0000	0,0000	0,0007	0,0003
	0,0002	0,0000	353 0,0000	556 0,0146	519 0,0018	062	335 0,0000	677 0,0000	778 0,0073	259 0,0009	67 0,00005	73 0,00000	50 0,00001	33 0,00366	0,00047	00 0,00004	00	0,00000	0,00000	00,00008	00 0,00001	333 0,0000	217	0,0000	222 0,0000	0.0001	333	0.0005	758	0.0000	778 0.0000 (972 0.0009	306 0.0003
11	133	347	700	667	889	0,0001	173	350	333	444	33	87	75	67	22	89	0,00000 79	36	94	0,00008	39	667	108	0,0000	111	139	167	333	867	33	889	111	778
12			0,0000	0,0051	0,0006	0,0000	0,0000	0,0000		0,0003	0,00001	0,00000	0,00000	0,00073	0,00009	0,00004	0,00000	0,00000	0,00000	0,00008	0,00001	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000		0,0000	0,0000	0,0000	0,0001	0,0000
12	747	121	245	333	611	373	061	123	667	306	07	17	35	33	44	89	79	36	94	06	39	667	108	042	111	139	167	667	108	04	111	139	472
13	0,0003	0,0000	0,0001		0,0034	0,0001	0,0000	- ,	- ,	0,0017	0,00006	0,00001	0,00002	0,00440	0,00056	-	0,00003	0,00001	0,00003	0,00032	0,00005	0,0000	- ,	- ,	.,	0,0001	0,0000	- ,	0,0000	0,0000	0,0000	- ,	0,0003
	840	624	260	000	000	920	0.0000	630	0.0096	000	40	04	10	00	67 0,00042	56 0.00009	18	0.00000	78 0.00001	22	56	667 0.0000	108	0.0000	0.0000	0.0001	0.0000	0.0003	867	0.0000	889	111	$\frac{778}{0.0002}$
14	0,0002 809	0,0000 456	0,0000	111	870	404	228	461	556	435	0,00004	0,00000 78	0,00001 58	0,00330	50	78	59	0,00000	89	0,00016 11	0,00002 78	667	108	0,0000	111	139	167	333	0,0000 542	21	556	0,0005	361
4.5		0,0000	0,0000	0,0156		0,0001		0,0000	0,0078	0,0010	0,00004			0,00293			0,00000	0,00000	0,00000	0,00008	0,00001			0,0000	0,0000		0,0000			<u> </u>	0,0000 0	0,0003	
15	276	370	747	444	148	138	185	373	222	074	27	69	40	33	78	89	79	36	94	06	39	667	108	042	111	139	167	000	325	13	333	417	417
16		0,0001		0,0748		0,0005			0,0374	0,0048		0,00001	0,00002		·	0,00039	0,00006	0,00002		0,00064	0,00011	0,0006		0,0000	0,0001		0,0001	<i>'</i>		0,0000	0,0000	0,0006	0,0002
	880	768	570	000	333	440	884	785	000	167	00	30	63	00	83	11	36	89	56	44	11	667	083	417	111	389	667	000	650	25	667	833	833
17	0,0001	185	0,0000	222	0,0010	569	0,0000	187	0,0039	0,0005	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,00000	0,0000	0,000	0,0000	000	0,0000	0,000	0,0000	0000	0,0000	0,0000	0,0000	0,0000
				0.0388					0,0194			0,00000	0,00001		0,00051		0.00007							0,0000						0.0000	0,0000		0.0001
18	653	919	855	667	056	827	459	928	333	028	87	95	93	33	94	00	15	25	50	50	50	000	650	250	667	833	000	667	433	17		556	889
19	0,0003	0,0000	0,0001	0,0212	0,0027	0,0001	0,0000	0,0000	0,0106	0,0013	0,00002	0,00000	0,00000	0,00146	0,00018	0,00014	0,00002	0,00001	0,00002	0,00024	0,00004	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0000	0,0000	0,0000	0,0002	0,0000
17	093	503	015	667	389	547	251	508	333	694	13	35	70	67	89	67	38	08	83	17	17	000	000	000	000	000	000	333	217	08	222	278	944
20		0,0001	1 '			1 '		1	1 '	· ·		0,00001	0,00003		·	0,00004		1						0,0000		1	· ·	<i>'</i>	,		0,0001	<i>'</i>	· /
	0.0002	0,0000	252 0,0000	778	759	0.0001	558	126	0.0077	380 0,0009	0.00005	56 0,00000	0,00001	00	00	89 0,00039	79 0.00006	36	94	06	39	667	0.0000	0.0000	0.0000	556 0.0004	0.0000	000	300	0,0000	0.0000 (667 0,0005	0.0002
21	240	364	735	000	833	120	182	368	000	917	33	87	75	67	22	11	36	89	56	44	11	667	433	167	444	556	667	333	542	21	556	694	361
22				0,0371							0,00007		0,00002			0,00029								0,0000						<u> </u>			
22	404	878	773	556	852	702	439	887	778	926	47	21	45	33	11	33	77	17	67	33	33	667	433	167	444	556	667	333	217	08	222	278	944
23	· ·		0,0000	·					0,0085			0,00000	0,00000			0,00039		1				0,0005		0,0000			· '	0,0000	,		0,0000	<i>'</i>	· /
	489	404	817	111	037	244	202	408	556	019	60	26	53	00	17	11	36	89	56	44	11	333	867	333	889	111	333	667	108	04	111	139	472

	вещества 301 304 330 337 2' 24 0,0004 0,0000 0,0001 0,0315 0,			и, на	Легн	совые	е авто	мобил	и на	Mapı	прутн	-	, -	тные	Гру	•	е авто			сой	Гру				ти мас	сой		A	втобу	усы, г/	'c		
Howen		беі	нзине,	г/с			Γ	газу, г	c			сре	дства	г/с			<u> </u>	льше :	3,5 тоі	HH			M	енее]	12 тон	H							
точки	очки код загрязняющег вещества					К	од заі	грязня	ющег	0	Код за	агрязн	яюще	го вен	цества	Код	ц загр:	язняю	щего н	вещес	тва	Код	(загря	наны	щего	вещес	тва	Код	загря	окне	щего і	вещес	тва
		В	ещест	ва			В	ещест	ва											-													
	301	304	330	337	2704	301	304	330	337	415	301	304	330	337	2704	301	304	328	330	337	2732	301	304	328	330	337	2732	301	304	328	330	337	2732
24	0,0004	0,0000	0,0001	0,0315	0,0040	0,0002	0,0000	0,0000	0,0157	0,0020	0,00004	0,00000	0,00001	0,00330	0,00042	0,00029	0,00004	0,00002	0,00005	0,00048	0,00008	0,0006	0,0000	0,0000	0,0001	0,0010	0,0001	0,0001	0,0000	0,0000	0,0000	0,0002	0,0000
24	587	745	505	333	611	293	373	753	667	306	80	78	58	00	50	33	77	17	67	33	33	000	975	375	000	250	500	333	217	08	222	278	944

Сводная таблица теоретических выбросов по Надыму в зимний период 2019 года, вечерний учет

	Легк	совые	автом	иобил	и, на	Лег	ковые	авто	мобил	и на		Maj	ошрут	ные		Гру	узовы	е авто	мобил	и мас	сой	Гру	/30ВЫ	е авто	мобил	іи мас	сой			5		10	
		бе	нзине,	г/с			Ι	азу, г	/c		тран	спорт	ные с	редст	ва г/с		бо	льше	3,5 то	нн			M	ленее 1	12 тон	H			A	ABTOO,	усы, г	/C	
Номер	К	од за	грязня	нощег	TO	I	Сод заг	грязн	яющеі	Γ 0	ŀ	Сод заг	грязня	юще	Γ 0	TC			-			TC						TC					
точки		В	ещест	ва			В	ещест	ва			В	ещест	ва		KO	ц загр:	овнев	щего	вещес	тва	KO	ц загря	окнек	щего	вещес	тва	Код	(загря	нян	ощего	вещес	тва
	301	304	330	337	270	301	304	330	337	415	301	304	330	337	270	301	304	328	330	337	273	301	304	328	330	337	273	301	304	328	330	337	273
-	0,000	0,000	0,000	0,062	0,008	0,000	0,000	0,000	0,031	0,004	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
1	9102	1479	2987	5778	0593	4551	0740	1493	2889	0296	0640	0104	0210	4000	5667	0978	0159	0072	0189	1611	0278	0000	0000	0000	0000	0000	0000	4000	0650	0025	0667	6833	2833
2	0,000	0,000	0,000 2777	0,058 1778	0,007	0,000	0,000	0,000	0,029	0,003	0,000	0,000	0,000	0,008	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
	8462 0,001	1375 0,000	0,000	0,087	4926 0,011	4231 0,000	0,000	0,000	0889	7463 0,005	1173 0,000	0191	0385	0,006	0389	4889 0,001	0,000	0361	0,000	8056 0,002	0,000	0,000	0217	0,000	0222	2278 0,000	0,000	2667 0,000	0433	0,00	0,000	4556 0,000	1889 0.000
3	2658	2057	4153	0222	2074	6329	1028	2077	5111	6037	0960	0156	0315	6000	8500	6622	2701	1228	3211	7389	4722	1333	0217	0083	0222	2278	0333	2667	0433	0017	0444	4556	1889
4	0,000	0,000	0,000	0,018	0,002	0,000	0,000	0,000	0,009	0,001	0,000	0,000	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
-	2631	0428	0863	0889	3296	1316	0214	0432	0444	1648	0533	0087	0175	6667	4722	0978	0159	0072	0189	1611	0278	5333	0867	0333	0889	9111	1333	2667	0433	0017	0444	4556	1889
5	0,000 4942	0,000 0803	0,000 1622	0,033 9778	0,004 3759	0,000 2471	0,000	0,000	0,016 9889	0,002 1880	0,000 0640	0,000 0104	0,000 0210	0,004 4000	0,000 5667	0,000 5378	0,000 0874	0,000 0397	0,000 1039	0,000 8861	0,000 1528	0,000 4000	0,000 0650	0,000 0250	0,000 0667	0,000 6833	0,000 1000	0,000 2000	0,000 0325	0,00 0013	0,000 0333	0,000 3417	0,000 1417
	0,000	0,000	0,000	0,019	0,002	0,000	0,000	0,000	0,009	0,001	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
6	2773	0451	0910	0667	4556	1387	0225	0455	5333	2278	0213	0035	0070	4667	1889	0489	0079	0036	0094	0806	0139	3333	0542	0208	0556	5694	0833	2000	0325	0013	0333	3417	1417
7	0,000	0,000	0,000	0,036	0,004	0,000	0,000	0,000	0,018	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
-	5369 0,000	0872	1762 0,000	9111 0,045	7537 0,005	2684 0,000	0436	0,000	4556 0,022	3769 0,002	0107	0,000	0,000	7333	0,000	0,000	0,000	0,000	0189	1611 0,000	0,000	0,000	0108	0,000	0,000	1139 0,000	0167	0,000	0217	0,00	0,000	2278 0,000	0,000
8	6613	1075	2170	4667	8556	3307	0537	1085	7333	9278	0,000	0009	0,000	3667	0,000	0000	0000	0000	0000	0000	0000	1333	0,000	0,000	0222	2278	0333	0,000	0,000	0004	0,000	1139	0,000
9	0,000	0,000	0,000	0,029	0,003	0,000	0,000	0,000	0,014	0,001	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
9	4338	0705	1423	8222	8407	2169	0352	0712	9111	9204	0640	0104	0210	4000	5667	1467	0238	0108	0283	2417	0417	0000	0000	0000	0000	0000	0000	2667	0433	0017	0444	4556	1889
10	0,000 5618	0,000	0,000 1843	0,038 6222	0,004 9741	0,000 2809	0,000	0,000 0922	0,019	0,002 4870	0,000 0480	0,000 0078	0,000 0158	0,003 3000	0,000 4250	0,000 0489	0,000 0079	0,000 0036	0,000 0094	0,000 0806	0,000 0139	0,000 0667	0,000 0108	0,000	0,000	0,000 1139	0,000 0167	0,000 6000	0,000 0975	0,00	0,000	0,001 0250	0,000 4250
	0,000	0913	0,000	0,009	0,001	0.000	0.000	0.000	0,004	0,000	0,000	0,000	0,000	0.001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0.000	0.000	0,000	0,000	0.000	0.000	0.00	0.000	0,000	0.000
11	1316	0214	0432	0444	1648	0658	0107	0216	5222	5824	0213	0035	0070	4667	1889	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0667	0108	0004	0111	1139	0472
12	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,003	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
	0889	0144	0292	1111	7870	0.000	0072	0146	0556	3935 0,002	0587	0,000	0193	0.000	5194	0000	0,000	0,000	0000	0,000	0000	0.000	0.000	0000	0,000	0,000	0,000	0,000	0,000	0.00	0.000	0.000	0,000
13	0,000 5796	0,000 0942	0,000 1902	0,039 8444	0,005 1315	2898	0,000 0471	0,000 0951	0,019 9222	5657	0,000	0,000	0,000 0018	3667	0,000 0472	0,000 1956	0,000	0,000	0,000	3222	0,000 0556	0000	0000	0,000	0000	0,000	0000	1333	0,000	0,00	0,000	2278	0,000
1.4	0,000	0,000	0,000	0,059	0,007	0,000	0,000	0,000	0,029	0,003	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,001	0,000
14	8711	1416	2858	8889	7130	4356	0708	1429	9444	8565	0800	0130	0263	5000	7083	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	7333	1192	0046	1222	2528	5194
15	0,000	0,000	0,000	0,056	0,007	0,000	0,000	0,000	0,028	0,003	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
	8178 0,001	1329 0,000	2683 0,000	2222 0,093	2407 0,011	4089 0,000	0,000	0,000	0,046	6204 0,005	1067 0,000	0,000	0350	3333	9444	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0108	0,000	0111	1139 0,000	0167	2000 0,000	0325	0,00	0,000	3417 0,001	0,000
16	3547	2201	4445	1333	9944	6773	1101	2223	5667	9972	0427	0069	0140	9333	3778	0978	0159	0072	0189	1611	0278	2000	0325	0125	0333	3417	0500	6667	1083	0042	1111	1389	4722
17	0,000	0,000	0,000	0,008	0,001	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
17	1209	0196	0397							5352								0000		0000			0000		0000			0000					
18	0,001 2800	0,000 2080	0,000 4200	0,088	0,011	0,000 6400	0,000 1040		0,044 0000	0,005 6667	0,000 0853		0,000 0280		0,000 7556	0,000 5867	0,000 0953	0,000 0433	0,000 1133	0,000 9667	0,000 1667	0,000 3333	0,000 0542	0,000 0208	0,000 0556	0,000 5694	0,000 0833	0,001		0,00	1667	0,001 7083	0,000 7083
10	0,000	0,000	0,000	0,068	0,008					0,004	0,000	0,000				0,000		0,000		0,000	0,000		0,000		0,000	0,000	0,000	0,001	0,000				
19	9991	1624	3278	6889	8463	4996	0812	1639	3444	4231	0800	0130	0263	5000	7083	2933	0477	0217	0567	4833	0833	3333	0542	0208	0556	5694	0833	0000		0063	1667	7083	7083
20	0,001	0,000	0,000	0,092	0,011	0,000	0,000				0,000	0,000				0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000	0,000			0,000	
	3440 0,000	2184 0,000	0,000	4000 0,038	9000	6720 0,000	1092 0,000	2205 0,000	2000 0,019	9500 0,002	0427	0,000	0140	9333	3778 0,000	1956 0,000	0,000	0144	0378	3222 0,000	0556	0,000	0217	0,000	0222	2278 0,000	0,000	3333 0,000	0542	0021	0556	5694 0,000	0,000
21	5582	0,000	1832		9426	2791	0,000	0,000	1889	4713	0267	0043	0,000		2361	1467	0238	0108	0283	2417	0,000	2000	0325	0125	0333	3417	0500	3333		0021	0556		
22	0,000	0,000	0,000	0,039	0,005	0,000	0,000	0,000	0,019	0,002	0,000	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0,000	0,000
44	5796	0942	1902	8444	1315	2898	0471	0951	9222	5657	1120	0182	0368	7000	9917	1467	0238	0108	0283	2417	0417	1333	0217	0083	0222	2278	0333	1333		0008	0222	2278	
23	0,000 2880	0,000 0468	0,000 0945	0,019 8000	0,002 5500	0,000 1440	0,000 0234			0,001 2750	0,000 0373	0,000 0061	0,000 0123	0,002 5667	0,000 3306	0,000 3911	0,000 0636	0,000 0289	0,000 0756	0,000 6444	0,000 1111	0,000 4667	0,000 0758		0,000 0778	0,000 7972	0,000 1167	0,000	0,000	0,00	0,000	0,000	· ′
2.1	0,000	0,000	0,000	0,030	0,003	0,000	0,000	0,000	0,015		0,000	0,000				0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000		0,00	0.000	0,000	
24	4480	0728	1470		9667	2240	0364			9833	0267			8333		0978	0159	0072	0189	1611	0278	0667	0108		0111	1139			0758				