В.А. Шапцев, А.П. Гребенкина, А.В. Калабухова, А.В. Колмакова

Тюменский государственный университет, г. Тюмень УДК 004.45

КОНЦЕПТУАЛЬНЫЙ ПРОЕКТ ЦИФРОВОЙ ТЕХНОЛОГИИ ПОДДЕРЖКИ ОСВОЕНИЯ ЦЕНТРАЛЬНОЙ ПРЕДЕЛЬНОЙ ТЕОРЕМЫ

Аннотация. Представлен гипотетический диалоговый процесс, ведомый цифровой технологией, на примере освоения студентом центральной предельной теоремы теории вероятностей.

Ключевые слова: сумма случайных величин, центральная предельная теорема, нормальное распределение.

ВВЕДЕНИЕ

Целью публикации является апробация новой парадигмы цифровой технологии (ЦТ) поддержки усвоения студентом материала на примере изучения центральной предельной теоремы (ЦПТ) тории вероятностей. Основой этой технологии является диалог студент-ЦТ: обмен репликами (действия студента, ответы; вопросы, пояснения, оценка от ЦТ) по инициативе ЦТ. Целевыми качествами конечного продукта: максимум математической формализации для развития математической культуры студента; верификация понимания студентом имеющейся в теме и связанной с нею терминологии; эргономичное взаимодействие с ЦТ (минимум кликов и переходов, осуществляемых студентом; объектный рабочий экран; минимум текста — максимум математического отображения смысла; крупные, немногочисленные символы и изображения).

1. Компактная теория ЦПТ для одинаковых слагаемых [1]

Теорема. Случайная величина (СВ) $Y_n = \sum_{i=1}^n X_i$, где X_i — независимые СВ с одной и той же плотностью вероятностей $f_{XI}(x)$ (с математическим ожиданием $\mathbf{M}\{X_i\} = m$ и дисперсий $\mathbf{D}\{X_i\} = \sigma^2$), имеет асимптотически нормальное распределение с параметрами $m_Y = nm$ и СКО $\sigma_Y = \sigma \sqrt{\mathbf{n}}$.

Доказательство. Вспоминаем характеристическую ($X\Phi$) стандартного нормального распределения ($\mathbf{m}=0,\, \mathbf{\sigma}=1$) $\mathbf{N_{0,1}}$ СВ $\boldsymbol{\xi}:\, \boldsymbol{\varTheta_{\xi}}(t)=\exp{(-t^2/2)}$. Введем стандартизованные СВ $Y_i=\frac{X_i-\mathbf{m}}{\sigma}$, по условию теоремы независимые с одинаковыми $\mathbf{m}=0$ и $\boldsymbol{\sigma}=1$. Сформируем СВ

$$Z_n = \sum_{i=1}^n Y_{i_1} = \frac{Y_n - nm}{\sigma}. \tag{1}$$

Докажем, что $Z_n/\sqrt{n} \to N_{0.1}$, используя совокупность ХФ и предельный переход n -> ∞ . ХФ СВ

$$Z_n/\sqrt{n}$$
 (2)

из-за независимости слагаемых $\Theta_{Z_n}(t) = \Theta_{Z_n}\left(\frac{t}{\sqrt{n}}\right) = \left(\Theta_{Y_1}\left(\frac{t}{\sqrt{n}}\right)\right)^n$. Разложим основание степени в ряд Тейлора с коэффициентами в виде центральных моментов возрастающего порядка: 1-й = 0, 2-й σ^2 = 1 и т.д.: $\Theta_{Y_1}(t/\sqrt{n}) = 1 - \frac{t^2}{2n} + o(t^2/n)$. При $n \to \infty$ имеем замечательный предел:

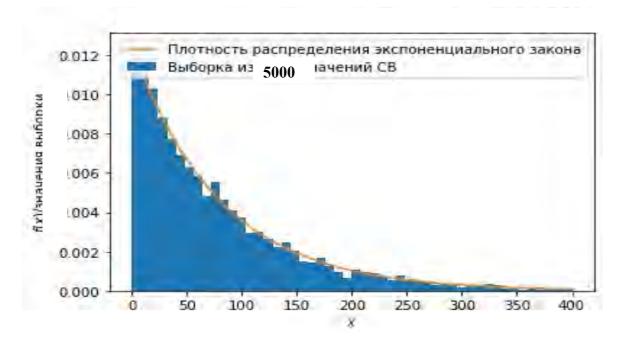
$$\Theta_{\underline{Z_n}}(t) = \left(\Theta_{Y_1}\left(\frac{t}{\sqrt{n}}\right)\right)^n = \left(1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right)^n \to e^{-\frac{t^2}{2}},$$

т.е. предел является XФ стандартного нормального распределения. **Асимптотика к нормальности доказана**.

При конкретном n из (2) и (1) имеем: $\mathbf{M}\{Z_n/\sqrt{n}\} = \mathbf{M}\{\frac{Y_n - nm}{\sigma\sqrt{n}}\} = \frac{1}{\sigma\sqrt{n}}(\mathbf{M}\{Y_n\} - \mathbf{nm}) = 0$, т.е. $\mathbf{M}\{Y_n\} - \mathbf{nm}$; $\mathbf{D}\{Z_n/\sqrt{n}\} = \mathbf{D}\{\frac{Y_n - nm}{\sigma\sqrt{n}}\} = \frac{1}{n\sigma^2}(\mathbf{D}\{Y_n\} - \mathbf{0}) = 1$, т.е. $\mathbf{D}\{Y_n\} = \mathbf{n} \sigma^2$ или $\sigma_Y = \sigma\sqrt{\mathbf{n}}$. Теорема доказана.

Перечислим **термины** для вопросов студенту от ЦТ: определение случайной величины (СВ), имя СВ, область определения СВ, функция распределения (вероятностей) СВ, плотность распределения (вероятностей) СВ, СВ задана — это ..., определения математического ожидания и дисперсии СВ, индикатор независимости 2-х СВ, определение ХФ СВ, ХФ нормальной и экспоненциальной СВ (вывод).

2. Наглядный вычислительный эксперимент


Задача. Устройство работает с математическим ожиданием времени безотказной работы 80 часов. Интервал времени τ между отказами распределен экспоненциально: $f_{\tau}(x) = \lambda \exp{(-\lambda x)}, x \in \mathbb{R}^+, \lambda = 1/80$. Студенту: показать, что математическое ожидание экспоненциальной СВ $\mathbf{M}\{\tau\} = 1/\lambda$, дисперсия $\mathbf{D}\{\tau\} = 1/\lambda^2$.

Рассмотреть суммарное время безотказной работы устройства послс n его отказов и включений. Тогда время безотказной работы такой системы станет суммой времен отказов в каждом включении. Создать имитационный эксперимент по наблюдению распределения времени безотказной работы такой системы при разных значениях n >> 1.

Эксперимент.

- 1. Генерируем N = 5000 псевдослучайных независимых значений СВ с экспоненциальным распределением при $\lambda = 0.0125$ (рис. 1 и табл. 1).
- 2. Создаем n выборок СВ Y_n объема 50, суммируя по n = 5, 10, 50 и 100 псевдослучайных чисел (произвольно выбранных).
- 3. Строим гистограммы частот, вычисляем для них оценки m и σ^2 .
- 4. Отображаем эмпирические «плотности» графически.
- 5. Сопоставляем и делаем заключение: работает ли ЦПТ.

Необходимо: получить и отобразить 4 эмпирические распределения частот и оценки моментов СВ: Y_5 , Y_{10} , Y_{50} , Y_{100} . По этим результатам сделать качественное заключение о работе в этом эксперименте ЦПТ.

Puc. 1. Исходная совокупность значений CB с экспоненциальным распределением п ри $\lambda = 1/80$

Таблица 1. Оценки моментов СВ по сгенерированным значениям

	$m = 1/\lambda$	σ^2	$\sigma = 1/\lambda$
Исходные	80	6400	80
Оценка	79,49	6569,54	81,05

3. Сценарий взаимодействия студент-ЦТ

Для проектирования заявленной выше ЦТ в табл. 2 отображен фрагмент гипотетического сценария взаимодействия с нею студента в сеансе освоения им существа ЦПТ с одинаковыми слагаемыми. В каждой ячейке столбца реакции ЦТ имеется две строки. 1-я отображает содержимое экранной формы (результат реакции ЦТ). 2-я содержит реплику ЦТ, инициирующую следующее действие студента.

В порядке обсуждения табл. 2 отметим следующее.

1. Необычность и большая трудоемкость разработки полного сценария (в согласии с рекомендациями [2]) требует участия методолога учебного процесса, навыка реализации алгоритмов «искусственного интеллекта» и существенно большего времени.

- 2. Эта работа позволила авторам усвоить существо именно сценария взаимодействия студента с ЦТ, а не алгоритма работы ЦТ для пользователя.
- 3. Проектирование современных ЦТ должно включать этап формирования сценария взаимодействия с ней.

Заключение

Представленный в статье результат носит характер иллюстративной попытки реализовать новый подход к существу и проектированию цифровой поддержки освоения студентами высшей математики.

СПИСОК ЛИТЕРАТУРЫ

- 1. Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения: учеб. пособие для студ. втузов. 4-е изд., стереотип. М.: Высшая школа, 2007. 491 с.
- 2. Шапцев В.А. Концепция человекоподобного диалога с цифровой инфраструктурой организации // Настоящий сборник.

Таблица 2. Сценарий взаимодействия студента с ЦТ освоения ЦПТ

Nº	Студент	Цифровой модуль (экран)	Примечание	Переход	О реализации
1	Клик « ЦПТ»	ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА. Одинаковые слагаемые Формулировка (см. п. 1)	-	п. 2	
		Выделите важные слова в формулировке ЦПТ			
2	Клики до 5 фрагментов	В формулировке выделены кликнутые и все важные фрагменты, баллы.			База верных
		Введите формулу плотности нормального распределения. Заполните окна о смысле параметров и области значений СВ.	При неверных		ответов
3	Ввод формулы	© Формула – на экране. Смысл параметров.	ответах предлагается		
		Какие методы мат. анализа использованы в доказательстве?	подумать 1-3 мин. и		
4	Заполнение окон	Перечень методов в доказательстве ЦПТ.	дать ответ заново.		
		Введите стандартизованную СВ для Ү в исходной символике.	'		
5	Ввод формулы	☺ Верно. Формула	При 2-м «неверно»		
	преобразования	⊗҈ Неверно. Подумайте 2 мин. и введите заново.	-3 балла. Подсказка		
		Что такое характеристическая функция $\Theta_{\!\scriptscriptstyle X}\!({\sf v})$ распределения $f_{\scriptscriptstyle X}\!({\sf x})$?			1
		(Ответ – предложением, лучше = ЦТ отображает формулой)			
6		и так далее по теории.			
		Переходим к эксперименту. Суммируем СВ с показательным распределением. Задайте эту СВ.			
7	Ввод формулы	Формула плотности вероятности и окна			
		с математически ожиданием и дисперсией.			
		Введите значение параметров λ , N. Запустите генератор ПСЧ.			
	Ввод. Запуск генератора	Таблица с N значениями псевдослучайной величины. Гистограмма частот на 15 интервалах.			
	Sanyenreneparopa	В каких границах существует λ ? 0< λ <=1 0< λ <1 0< λ λ > 0			
7	Выбор	Верный ответ. Кнопка «Эксперимент»			
		Задайте 4 значения <i>п</i> (кол-во суммируемых CB).			
		Запуск счета и отображения гистограмм			
8	Клик	4-е гистограммы. Таблица со значениями m , $oldsymbol{\sigma}^2$, $oldsymbol{\sigma}$	-		
	«Эксперимент»	Сформулируйте вывод.			
9 B	Ввод, озвучивание	Распознанный текст. Оценка.	-		
	заключения	До свидания! Дальнейших успехов!			