Тюменский государственный университет, г. Тюмень

УДК 004.94

ФАКТОРЫ ОКРУЖЕНИЯ И ИХ ВЛИЯНИЕ НА ВНЕШНИЕ ПРОЕКТЫ

Аннотация. В статье представлен анализ факторов, влияющих на действия при ведении внешнего проекта, определены контролируемые показатели. Представляются способы снижения негативных воздействий по средствам внедрения систем автоматизации и различных методик.

Ключевые слова: внешний проект, управление проектом, управление рисками, фактор окружения, системы автоматизации.

Введение

Внешний проект — проект, выполняемый для заказчика из другой компании или частного лица. Следовательно, предназначается для стороннего лица, что обуславливает зависимость от факторов окружения [9]. Каждый тип факторов влияет на определенные условия в ходе выполнения проекта, но общим для всех является увеличение продолжительности работ в сравнении с аналогичным внутренним проектом. Все это усложняет выполнение работ и отслеживание текущих результатов, что делает для многих компаний нежелательным вести с другими юридическими лицами внешние проекты в качестве исполнителя, что в свою очередь мешает более глубокому взаимодействию между компаниями. Цель данного исследования — определить будет ли использование автоматизированных систем при работе над внешними проектами снижать влияние внешних факторов на бизнес-процесс.

1. Факторы окружения

К внешним факторам, влияющим на внешний проект, относят: поставки, эталонную власть, контрольные события, искусственные границы, коммуникативные издержки [7].

Поставки — уникальные и проверяемые продукт или услуга, поставляемые заинтересованной стороной, спонсором или заказчиком [7]. Само наличие поставок уже обуславливает зависимость ресурсов проектной команды от третьей стороны. На практике часто без поставок невозможно выполнить какиелибо этапы или задачи проекта, так как материалы, относящиеся к стороне заказчика, могут быть получены только из них.

Эталонная власть – требования, предъявляемым заказчиком для решения спорных ситуаций [7]. Сам же заказчик в большинстве случаев не располагает компетенциями по техническим вопросам, что приводит невозможности реализация тех или иных аспектов без внешних вмешательств, или же привести в будущем к новым инцидентам.

Контрольные события — сроки, к окончанию которых должен быть выполнен фиксированный список операций проекта [9]. Наличие заранее определенных сроков удобно при составлении плана работ, но оно не учитывает возможности отклонений как негативных, так и положительных. Из-за чего выполнение задач на опережение может вызвать нарушение в текущей работе и так же, как срыв сроков, затормозит весь проект.

Искусственные границы — ограничения на используемые технические средства или материалы для выполнения ряда задач. Для определенного рода задач подходят одни инструменты, но другие так же могут быть использованы, но с меньшей эффективностью. Подобного рода ограничения могут быть причиной неоптимальных решений и проблем после сдачи работ.

Коммуникативные издержки — затраты на обеспечение устойчивого канала связи [7]. Проектная команда создается из сотрудников заказчика и исполнителя, что порождает сложность в дальнейшем общении между членами команды. Помимо этого, необходим контроль действий как со стороны заказчика, так и со стороны исполнителя, из-за чего увеличивается объем отчетной документации. Пренебрежение же этим может привести к проявлению или быть частью сепаратизма команды.

2. Влияние факторов

Любой хозяйствующий субъект в своей деятельности сталкивается с риском. Он лежит в основе принятия всех управленческих решений. Риск — это возможность возникновения неблагоприятной ситуации или неудачного исхода производственно-хозяйственной или какой-либо другой деятельности. Выделяют несколько видов рисков, но рассмотрим только те, которые затрагивают наши факторы [5, 6].

Технологический риск — риск возникновения убытков или прекращения деятельности в результате отказа или ненадлежащей работы систем технологического обеспечения работы [10]. Основными причинами роста данного вида рисков являются нарушение техники безопасности, условий пользования или применение неподходящих технологий для решения задач [6]. Как следует из определения, при росте вероятности данного риска, растет также вероятность отказа имеющихся систем, что приводит к остановки бизнеспроцесса. В нашем случае на технологический риск влияют искусственные границы (не подходящие технологии) и эталонная власть (нарушение условий пользования), также возможно влияние контрольных событий, так как работа на опережение может вызвать сбой в процессах, налаженных у заказчика. Подобного рода задержки могут привести к рискам несоблюдения графика.

Риск качества — риск потерь (ущерба) организации из-за отклонений показателей качества производимых ею продуктов труда от требуемых значений [7]. Данный риск ведет за собой еще один, репутационный риск. Репутационный риск — риск потери прибыли или поставщиков, вследствие неблагоприятного восприятия имиджа компании [7]. Одной из сложностей поддержания качества является то, что требований качества для проекта и продукта и планировании документирования процедур демонстрации соответствия требованиям все заинтересованные стороны могут иметь собственные интересы в отношении стандартов качества [3]. Это приводит к необходимости для проектной команды самостоятельно разработать стандарт и проинформировать заказчика.

Отклонение от плана и коммуникативные издержки могут привести к утечке конфиденциальной информации, сокрытию растрат, невыполнения задач. Понижение качества, а в следствии и репутации, может привести к потере контрактов, деловых партнеров и в худшем случае к проявлению спекулятивных рисков.

Спекулятивный риск — риск, который кроме неблагоприятных и нейтральных последствий предполагает также возможность благоприятных последствий. При спекулятивном риске у субъекта существует возможность не только потерять, но и получить выгоду. Чаще всего он выгоден для стороны заказчика, так как, в случае разрыва контракта, в судебном порядке исполнителю необходимо возместить убытки, а у заказчика в зависимости от обстоятельств, могут остаться наработки с закрытого проекта. Наиболее зависимый от человеческого фактора риск из приведенных, так как строится на психологических факторах.

3. Контроль воздействий

Из приведенных выше рисков контролю со стороны исполнителя поддаются: риски сроков, качества, технологические.

Одним из способов рассчитать риски сроков является оценка по трем точкам: наиболее вероятная, пессимистичная и оптимистичная оценки времени выполнения [4]. Средняя взвешенная оценка времени выполнения (дни) вычисляется как:

$$\bar{P}_{\text{взвеш.сроков}} = \frac{OO + 4*BG + PO}{6},\tag{1}$$

где BG — наиболее вероятное оценка времени выполнения (% дни),

ОО – оптимистичная оценка времени выполнения (% дни),

РО – пессимистичная оценка времени выполнения (% дни).

Формула стандартного отклонение сроков выполнения (дни) имеет вид:

$$\sigma_{\rm cpokob} = \frac{PO - OO}{6},\tag{2}$$

где ОО – оптимистичная оценка времени выполнения (дни),

РО – пессимистичная оценка времени выполнения (дни).

Как можно заметить из формул 1, 2 для уменьшения вероятности риска и его отклонений достаточно сократить пессимистичную оценку. Они необходимы ДЛЯ определения максимальной И минимальной ожидаемых продолжительностей на уровне отдельных работ и всего проекта. В зависимости от сферы работ для этого могут быть применены АСУТП (автоматизированные управления техническим процессом), САПР системы автоматизированного проектирования) и АСКК (автоматизированные системы контроля качества), снижающие влияние человеческого фактора в рабочем процессе.

Для риска качества в общем случае можно использовать формулу риска ощущений [3, 5]:

$$R = \frac{\Delta Q - S}{Q_0},\tag{3}$$

где Q_0 — текущий коэффициент качества ($Q_0 \in [0, ..., 1]$, выражающий степень, удовлетворенности заказчика),

 ΔQ — ожидаемое изменение коэффициента качества,

S — издержки, невозмещаемые независимо от того, реализуется рисковое событие или нет.

Показатели ΔQ и Q_0 являются неконтролируемыми в планирования, а потому следует сократить невозвращаемые издержки. В зависимости от сферы деятельности такие издержки могут быть: амортизацией техники, оплатой труда сотрудников, чьи функции может заменить робот, информационная система и т. п., затраты на маркетинг, аренду и иные виды издержек, не зависящие напрямую от бизнес-процесса. Общее для них всех то, что они являются результатами принятых в прошлом решений. С целью принятия решений с наименьшими издержками в будущем рекомендуется использовать СППР (системы поддержки принятия решений), одной из функций которых является прогнозирование [8].

Технологический риск в случае реализации при выполнении проекта приводит к простою из чего следует, что его можно характеризовать как риск простоя в общем случае [1, 2]. В первую очередь определим коэффициент влияния при реализации риска:

$$I = \frac{LO}{LO + FO},\tag{4}$$

где LO – количество потерянных или приостановленных операций,

FO – фактическое количество операций в период простоя.

Далее определим потенциальную длительность периода простоя (мин.):

$$T = \sum_{i=1}^{M} (T_{task i} + T_{wait i}), \tag{5}$$

где M – количество шагов по устранению инцидента,

 $T_{task\ i}$ – длительность шага i по устранению инцидента (мин.),

 $T_{wait\;i}$ – время ожидания между шагами i и i+1 (мин.).

На основе формул 4 и 5 вычисляется приведенное время простоя:

$$T' = \sum_{i=1}^{N} T_i I = \sum_{i=1}^{n} T_i \frac{LO}{LO + FO},$$
 (6)

где N – количество периодов простоя,

LO – количество потерянных или приостановленных операций,

FO – фактическое количество операций в период простоя,

 T_i – потенциальная длительность периода простоя i.

Определение вероятности реализации риска проводится на основе статистики по следующему выражению:

$$F = \max\left(\frac{N_6 \cdot E_6}{0.5 \cdot 365}, \frac{N_{12} \cdot E_{12}}{365}, \frac{N_{24} \cdot E_{24}}{2 \cdot 365}\right),\tag{7}$$

где N_6 – фактическое количество инцидентов за 6 месяцев,

 E_6 – фактическое количество дней эксплуатации за 6 месяцев,

 N_{12} — фактическое количество инцидентов за 12 месяцев,

 E_{12} – фактическое количество дней эксплуатации за 12 месяцев,

 N_{24} — фактическое количество инцидентов за 24 месяца,

 E_{24} — фактическое количество дней эксплуатации за 24 месяца.

При моделировании можно использовать показательное распределение для определения количества инцидентов [12]. Формула вероятности риска частичного простоя имеет вид:

$$R_{PS} = T_i \cdot I \cdot F, \tag{8}$$

где I – коэффициент влияния при реализации риска,

 T_i – потенциальная длительность периода простоя,

F – вероятности реализации риска.

При $I \ge 50\%$ вероятность риска частичного простоя равняется вероятности риска полного простоя. Как можно заметить из выражений 6, 8 основными параметрами для определения риска являются I и T, зависящие от структуры технологического процесса. Изменение количества операций напрямую сказывается на качестве продукта или услуги, а потому необходимо воздействовать на длительность периода простоя. Для его сокращения можно: перевести часть шагов по устранению проблемы на автоматические системы, повысить отказоустойчивость за счет резервирования процессов компонентов систем, использующих различные подходы для достижения поставленных задач, проводить регулярных компенсационных работ. В любом из этих вариантов рекомендуется использовать АСМ (автоматизированные системы мониторинга) для отслеживания прецендентов и снижения времени реагирования.

4. Результаты моделирования

Для подтверждения приведенных выше утверждений была реализована имитационная математическая модель и собрана статистика по 10 000 итераций для тестового внешнего проекта (рис. 1) при различных условиях. Он состоит из трех типов процессов, для которых была сгенерирована статистика отказов по показательному закону [12] при λ со следующими значениями: 1.25, 1.5, 1.75, 2, 2.25. «Узел 4» представляет собой составной процесс с параллельными подпроцессам, сбой в одном из которых приводит к остановке всех связанных.

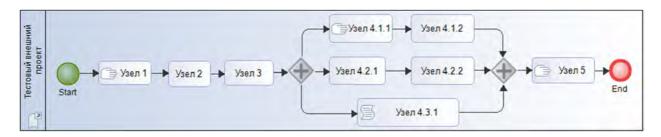


Рис. 1. Бизнес-процесс тестового внешнего проекта в нотации BPMN 2.0

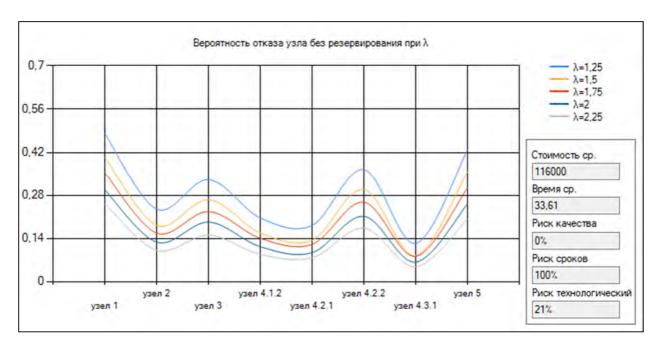

Каждый процесс имеет свои время возобновления, длительность, стоимость и цену содержания резервирующей системы (табл. 1). На основе содержания рассчитывается дополнительное количество средств для резервирования с соответствующим множителем. Время возобновления зависит от типа процесса.

Таблица 1. Процессы внешнего проекта и их показатели

Название	Длительность	Время	Стоимость	Содержание
		возобновления		резервирования
Узел 1	4	3.99	15 000	1 000
Узел 2	4	1.2	10 000	2 500
Узел 3	3	1.2	12 000	1 200
Узел 4.1.1	2	3.99	11 000	1 500
Узел 4.1.2	12	1.2	16 000	1 700
Узел 4.2.1	6	1.2	24 000	5 000
Узел 4.2.2	6	1.2	20 000	4 000
Узел 4.3.1	8	3.72	9 000	500
Узел 5	5	3.99	10 000	650

Результаты моделирования без учета резервирования представлены на рисунке 2. На графике процессов с их вероятностью отказа видно, что при росте λ понижается технологический риск. По определению λ обратно пропорционально математическому ожидание, следовательно, при проведении компенсационных работ, понижающих математическое ожидание. Это приводит

к необходимому росту λ. Следует отметить, что в средняя вероятность отказа в таком случае равняется 21%, а длительность превышает ожидаемую на 3.61 дня.

 $Puc.\ 2.$ Результаты моделирования при различных λ без резервирования

На рисунке 3 представлены результаты моделирования с учетом резервирования процессов «Узел 1», «Узел 4.2.2» и «Узел 5», определенных как наиболее влиятельные. При незначительном понижении вероятности отказа и средней длительности выросла стоимость, а с ней и риск качества.

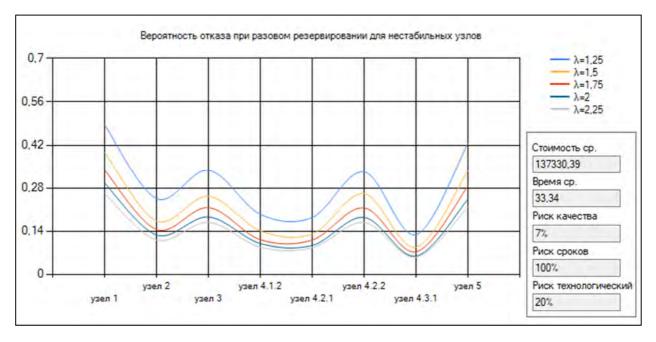


Рис. 3. Результаты моделирования при единичном резервировании процессов

При двойном резервировании данных процессов наблюдаются заметно отличающиеся результаты (рис. 4). Вероятность отказа для процессов «Узел 1» и «Узел 5» стремится к 0, а для «Узел 4.2.2» соответствует аналогичной без резервирования, но при $\lambda = 1.5$. Но в то же время, заметно выросла стоимость с риском качества, а технологический риск понизился до 11%, что привело к превышению ожидаемого времени только на 1.47.

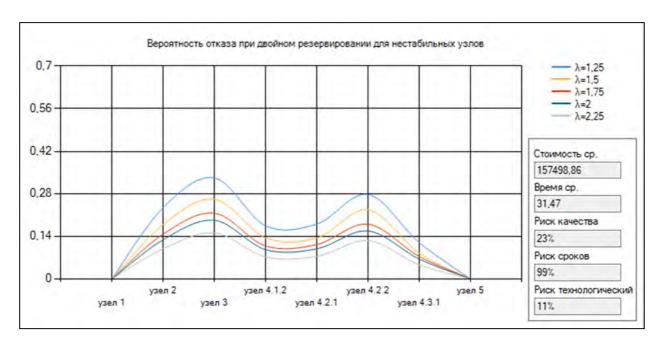


Рис. 4. Результаты моделирования при двойном резервировании процессов

Заключение

В работе представлено исследование факторов окружения, негативно влияющих на показатели вероятности рисков: репутационных, спекулятивных, технологических, качества и времени, и создана математическая модель влияния рисков на проект. На основе исследования определены способы снижения воздействий. Для контроля рисков качества необходимо использовать СППР и следить за структурой технологических процессов с целью снижения невозмещаемых издержек. В зависимости от сферы деятельности для понижения риска сроков, путем снижения пессимистичной оценки длительности проекта, могут быть использованы АСУТП, САПР и АСКК, а также необходимо следить за технологическими рисками. Для это следует определить процессы, требующие резервирования, количество и тип резервирований, проводить

регулярные компенсационные работы, использовать АСМ и следить за архитектурой технологических процессов, во избежание каскадов.

Планируется модифицировать модель, путем введения большего числа рисков. После успешной модификации на ее основе будет разработан рекомендательный модуль, для оптимизации проектов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Final Guidelines on ICT Risk Assessment under the SREP. European Banking Authority, 2017. EBA-GL-2017-05. URL: https://eba.europa.eu/documents/10180/1841624/Final+Guidelines+on+ICT+Risk+Assessment+under+SREP+%28EB A-GL-2017-05%29.pdf
- 2. Hyndman R.J., Fan Y. Sample Quantiles in Statistical Packages // American Statistician. American Statistical Association, 1996. Vol. 50, no. 4 p. 361–365 URL: https://www.amherst.edu/media/view/129116/original/Sample+Quantiles.pdf
- 3. Дубинин Е. Анализ рисков инвестиционных проектов. URL https://www.cfin.ru/finanalysis/invrisk/inv risk.shtml
- 4. Романова М.В., Анализ реализуемости программ и проектов по созданию инновационной продукции URL: https://www.src-master.ru/article81.html
- 5. Трещевский Д.Ю., Папин С.Н., Риски проектов малых инновационных предприятий вузов // Фундаментальные исследования, 2019. № 5 С. 138-142. URL: https://www.fundamental-research.ru/ru/article/view?id=42473
- 6. Федотова Г.В., Манченко Т.А., Особенности оценки инновационных рисков URL: https://cyberleninka.ru/article/n/osobennosti-otsenki-innovatsionnyhriskov
- 7. Смаржевский И.А., Особенности управления «Внешним» и «Внутренним» по отношению к исполняющей организации проектом. URL: https://cyberleninka.ru/article/n/osobennosti-upravleniya-vneshnim-i-vnutrennim-po-otnosheniyu-k-ispolnyayuschey-organizatsii-proektom
- 8. Разработка системы стратегического планирования и ее интеграция в систему государственного управления. М.: Когито-Центр, 2019. 170 с. URL:

http://www.fa.ru/org/science/epipeb/SiteAssets/%D0%A1%D0%B1%D0%BE%D1%80%D0%BD%D0%B8%D0%BA 3.pdf

- 9. Ким А. Управление внутренним и внешним проектом, 24.10.2009. URL: http://www.lessonslearned.ru/internal-external-pmanagement/
- 10. Политика управления банковскими рисками в коммерческом банке URL: http://www.orioncom.ru/demo_bkb/vn_k/vn_doc/rpol.htm
- 11. Риски организации, связанные с качеством продуктов труда URL: https://laws.studio/kachestvom-tovara-upravlenie/riski-organizatsii-svyazannyie-kachestvom-21684.html
- 12. Гмурман В.Е. Теория вероятности и математическая статистика. 9-е изд., стер. М.: Высш. шк., 2003. 479 с. URL: http://lib.maupfib.kg/wp-content/uploads/2015/12/Teoria veroatnosty mat stat.pdf