Алексей Владимирович БОЛДЫРЕВ¹ Сергей Владимирович БОЛДЫРЕВ² Дмитрий Леонидович КАРЕЛИН³

УДК 004.942:621.65

ВЛИЯНИЕ ПРОФИЛЯ ЛОПАСТИ НА ХАРАКТЕРИСТИКИ ВИХРЕВОГО НАСОСА ОТКРЫТОГО ТИПА С ОТКРЫТЫМ БОКОВЫМ КАНАЛОМ

- ¹ кандидат технических наук, доцент кафедры Высокоэнергетические процессы и агрегаты, Набережночелнинский институт (филиал) Казанского федерального университета (г. Набережные Челны) alexeyboldyrev@mail.ru; ORCID: 0000-0002-6184-9943
- ² кандидат технических наук, доцент кафедры Высокоэнергетические процессы и агрегаты, Набережночелнинский институт (филиал) Казанского федерального университета (г. Набережные Челны) underminder@mail.ru; ORCID: 0000-0003-3596-0565
- ³ кандидат технических наук, доцент кафедры Высокоэнергетические процессы и агрегаты, Набережночелнинский институт (филиал) Казанского федерального университета (г. Набережные Челны) karelindl@mail.ru; ORCID: 0000-0003-1479-633X

Аннотация

В статье представлены результаты численного моделирования установившегося турбулентного течения несжимаемой жидкости в вихревом насосе открытого типа с открытым боковым каналом и сравнение обобщенных результатов моделирования с известными экспериментальными данными. В основе математической модели использованы уравне-

Цитирование: Болдырев А. В. Влияние профиля лопасти на характеристики вихревого насоса открытого типа с открытым боковым каналом / А. В. Болдырев, С. В. Болдырев, Д. Л. Карелин // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика. 2020. Том 6. № 3 (23). С. 23-37. DOI: 10.21684/2411-7978-2020-6-3-23-37

ния Навье — Стокса и неразрывности, осредненные по Рейнольдсу, а также уравнения двухслойной Realizable k-є модели турбулентности, учитывающей кривизну линий тока. Была оценена сеточная независимость решения. Исследовано влияние 14 профилей лопасти на напор и коэффициент полезного действия вихревого насоса.

Решение уравнений модели осуществлено методом конечных объемов с помощью последовательного алгоритма в трех расчетных областях («подводящий канал», «лопастное колесо», «открытый боковой канал корпуса и отводящий канал») с оценкой сеточной независимости решения. Результат решения между областями передавался в соответствующих точках интерфейсных поверхностей. Исследовано влияние 14 профилей лопасти на напор и коэффициент полезного действия вихревого насоса.

По результатам моделирования предложены профили лопасти в виде прямоугольника с выпуклым скруглением лопасти на стороне всасывания радиусом 10 мм и в виде прямоугольного треугольника с вогнутым скруглением лопасти на стороне всасывания радиусом 52 мм и без скругления, дающие существенный рост напора — более 20%.

Ключевые слова

Вихревой насос открытого типа с открытым боковым каналом, численное моделирование, установившееся турбулентное течение, характеристики, лопасти вихревого насоса, напор.

DOI: 10.21684/2411-7978-2020-6-3-23-37

Введение

Вихревые насосы относятся к гидродинамическим насосам трения и используются в химической промышленности для подачи агрессивных жидкостей, на аэродромных и автомобильных станциях для перекачивания легколетучих жидкостей, на небольших насосных станциях сельскохозяйственного водоснабжения, коммунального хозяйства, на судах для подачи мытьевой и питьевой воды, в качестве вакуум-насосов и компрессоров низкого давления вместо водокольцевых насосов, как питательные насосы малых вспомогательных котельных установок и т. п.

По сравнению с центробежными насосами они обеспечивают при меньшей подаче напор в 3-9 раз больше при тех же размерах и той же частоте вращения, могут работать на смеси жидкости и газа, а также в режиме самовсасывания. Однако основным недостатком вихревых насосов является низкий коэффициент полезного действия, что препятствует их применению при больших мощностях. Кроме того, данные насосы не пригодны для перекачивания высоковязких жидкостей и жидкостей, содержащих абразивные частицы [1].

Вместе с тем многими исследователями отмечено значительное влияние различных геометрических параметров проточной полости, а также некоторых физических условий работы на характеристики вихревых насосов, в частности на производительность, энергоэффективность, надежность, параметры шума и вибрации и др. [2-7].

В обзорной статье Д. Аппиа и др. [2] указано, что оптимальное количество лопастей зависит от диаметра рабочего колеса и увеличивается с уменьшением характерного размера бокового канала. Сравнение характеристик вихревых насосов с V-, C-, Y- и Т-профилями лопастей рабочих колес показало, что при рабочих давлениях до 20 кПа оптимально применение V-профиля, а при больших давлениях целесообразно использование С-профиля. В ходе анализа экспериментальных данных о влиянии на работу насоса прямых наклонных лопастей с углами 0° , $\pm 15^{\circ}$, $\pm 30^{\circ}$ и $\pm 45^{\circ}$, а также шевронных лопастей с углами шеврона 15°, 30° и 45° было выявлено, что при малых подачах наибольшие значения напора достигаются применением шевронных лопастей с углом 30°, а при больших подачах напорные характеристики отличаются незначительно. Причем изменение указанных параметров практически не отразилось на зависимости гидравлического КПД от подачи. Повышению напора и КПД вихревого насоса может поспособствовать уменьшение осевых зазоров между рабочим колесом и стенками корпуса. Кроме того, в статье отмечено, что снижение гидравлических потерь напора может быть достигнуто за счет специальной формы отволяшего канала.

В ходе натурных и численных экспериментов Ф. Чжан, К. Чэнь и др. [6] оценили влияние угла перемычки в боковом канале между входным и выходным патрубком на шумовые и вибрационные характеристики вихревого насоса. Они обнаружили, что уменьшение этого угла приводит к росту напора и незначительному увеличению КПД насоса.

В работах Ф. Чжан, А. Фледер и др. [4] и Ф. Чжан, Д. Аппиа и др. [7] оценено влияние угла лопасти на стороне всасывания на напорные и шумовые характеристики вихревого насоса с радиальными лопастями треугольного сечения. В частности, установлено, что увеличение указанного угла способствует росту напора насоса при перекачивании однофазной среды.

Согласно Ф. Чжан, М. Боле и др. [5], напор, КПД и диапазон рабочих подач вихревого насоса с радиальными лопастями треугольного сечения уменьшаются при наличии газа в перекачиваемой жидкости. Причем это влияние усиливается с ростом объемного газосодержания. Однако уменьшение угла лопасти на стороне всасывания приводит к улучшению характеристик насоса при его работе на двухфазной смеси.

В работе С. Фледера и др. [3] рассмотрено влияние двухфазности потока на акустические характеристики вихревого насоса. Среди прочего там утверждается, что присутствие газа в перекачиваемой жидкости значительно снижает уровень шума от работающего насоса. Кроме того, авторами предложены изменения конструкции вихревого насоса, улучшающие разделение фаз в его проточной полости.

Следует отметить, что наличие большого количества параметров, характеризующих форму и размеры проточной полости, а также их сложное взаимное влияние на характеристики вихревых насосов, приводят к материальным и временным затратам при использовании экспериментальных методов иссле-

дования. Сложное, нестационарное, существенно трехмерное турбулентное движение жидкости в данных насосах затрудняет и теоретические исследования в этой области, а использование в качестве альтернативы методов численного моделирования требует наличия адекватной математической модели течения.

Поэтому целью данной работы является верификация математической модели установившегося турбулентного течения жидкости в проточной полости вихревого насоса открытого типа с открытым боковым каналом и исследование влияния профиля лопасти на характеристики насоса.

Методы

Объект исследования

В качестве объекта исследования выбран насос с известными экспериментальными зависимостями коэффициента напора и КПД от коэффициента подачи [6].

По цилиндрическому подводящему каналу рассматриваемого насоса диаметром 35,2 мм жидкость поступает к вращающемуся с частотой 1 500 об/мин рабочему колесу активным диаметром 150 мм, имеющему 24 радиальные попасти треугольного сечения шириной 15 мм (рис. 1). В результате взаимодействия с ними жидкость совершает сложное спиралевидное движение от подводящего к отводящему каналу, попеременно перемещаясь из межлопастных каналов колеса в открытый боковой канал полукруглого сечения и обратно. Жидкость покидает насос по цилиндрическому отводящему каналу диаметром 35,2 мм.

Математическая модель

В качестве математической модели квазистационарного трехмерного турбулентного течения несжимаемой жидкости в указанном насосе авторами выбраны уравнения сплошности (1) и Навье — Стокса (2), преобразованные согласно подходу Рейнольдса, и уравнения Realizable k-є модели турбулентности (3, 4) с использованием двухслойного подхода Роди, модели Вольфштейна и модифицированных пристеночных функций Рейхардта, которые позволяют учесть кривизну линий тока и вращение:

$$\frac{\partial \left(\rho \cdot V_j\right)}{\partial x_j} = 0,\tag{1}$$

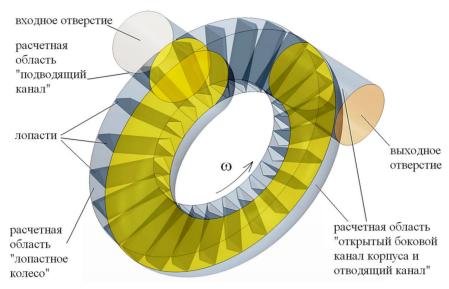
$$\rho \cdot V_j \cdot \frac{\partial V_i}{\partial x_i} = \frac{\partial P_{ji}}{\partial x_i},\tag{2}$$

$$\rho \cdot V_j \cdot \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right) + G_k - \rho \cdot \varepsilon, \tag{3}$$

$$\rho \cdot V_{j} \cdot \frac{\partial \varepsilon}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\left(\mu + \frac{\mu_{t}}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_{j}} \right) + C_{\varepsilon 1} \cdot \rho \cdot s \cdot \varepsilon - \frac{\varepsilon}{k + \sqrt{\nu \cdot \varepsilon}} \cdot C_{\varepsilon 2} \cdot \rho \cdot \varepsilon,$$

$$(4)$$

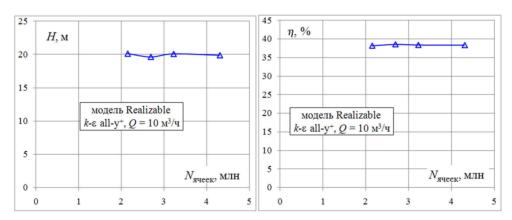
где i, j — индексы, принимающие значения $1, 2, 3; \rho$ — плотность жидкости, кг/м³; V — вектор скорости движения жидкости, м/c; х — координата, м; P — тензор напряжений, являющийся суммой тензоров вязких и пульсационных напряжений $(P_{_{\!\mathit{j}i}} = P_{_{\!\mathit{BM3}\!\mathit{j}i}} + P_{_{\!\mathit{TYPE}\!\mathit{j}i}},$ причем компоненты $P_{_{\!\mathit{TYPE}\!\mathit{j}i}}$ определены с использованием гипотезы Буссинеска), Па; k — кинетическая турбулентная энергия, M^2/c^2 ; μ — динамический коэффициент молекулярной вязкости жидкости, $1,12 \cdot 10^{-5} \, \Pi \text{a·c}$; μ, — динамический коэффициент турбулентной вязкости жидкости, Па∙с; σ_{k} — турбулентное число Шмидта для уравнения (3), 1; σ_{s} — турбулентное число Шмидта для уравнения (4), 1,2; $G_{\scriptscriptstyle k}$ — генеративный компонент уравнения переноса кинетической турбулентной энергии (3), кг/(м·с³); ε — скорость диссипации кинетической турбулентной энергии, м²/с³; $C_{\epsilon 1}$ — коэффициент при генеративном компоненте уравнения переноса скорости диссипации (4); ν — кинематический коэффициент молекулярной вязкости жидкости (μ / ρ), м²/с; C_{s2} — коэффициент при диссипативном компоненте уравнения переноса скорости диссипации (4), 1,9; Ѕ — параметр, связанный со вторым инвариантом тензора скоростей деформаций, c^{-1} .


Методология исследования

Численное моделирование течения осуществлялось методом конечных объемов с помощью последовательного алгоритма, реализованного в программном комплексе STAR-CCM+. Решение уравнений (1-4) модели осуществлялось в трех расчетных областях («подводящий канал», «лопастное колесо», «открытый боковой канал корпуса и отводящий канал»), результат решения между которыми передавался в соответствующих точках интерфейсных поверхностей (рис. 1). Причем во вращающейся области «лопастное колесо» учитывалось воздействие на поток центробежных и кориолисовых сил инерции.

На проницаемых границах расчетных областей задавались параметры соответствующей точки напорной характеристики насоса: массовый расход жидкости на входе и постоянное давление на выходе. На неподвижных стенках все проекции скорости считались равными нулю. В результате расчета для каждого значения подачи из рабочего диапазона 4,6…12,3 м³/ч определялись: напор (по разности полных давлений на выходе и входе насоса); крутящий момент, действующий на лопасти колеса; потребляемая мощность; и гидравлический КПД насоса.

Дискретизация расчетных областей осуществлялась с помощью сеток на основе многогранных ячеек (со слоями призматических ячеек вблизи стенок). Сгущение сетки выполнено на интерфейсных поверхностях, лопастях рабочего


колеса, а также в пристеночных зонах течения для корректного использования гибридных пристеночных функций.

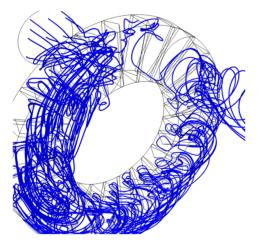
Puc. 1. Постановка задачи: расчетные области, входная и выходная границы

Fig. 1. The problem statement: the computational domain, the input and output boundaries

В ходе предварительной оценки сеточной независимости решения по значениям напора и КПД при оптимальной подаче $10\,\mathrm{m}^3/\mathrm{q}$ для расчета характеристик вихревого насоса окончательно была выбрана сетка, содержащая около 3,22 млн ячеек (рис. 2).

Рис. 2. Оценка сеточной независимости решения

Fig. 2. Evaluating the grid independence of the solution


В рамках метода конечных объемов производные в уравнениях математической модели аппроксимированы неявными схемами второго порядка. Начальными условиями для каждого режима работы насоса были заданы нулевые значения избыточного давления и проекций скорости движения жидкости. В расчетах итерации продолжались до стабилизации нормализованных среднеквадратических невязок по всем дифференциальным уравнениям модели течения (не выше 10^{-4}) и стабилизация значений напора и крутящего момента.

Результаты

На рис. З представлены линии тока, полученные в результате расчета параметров течения в вихревом насосе при минимальной рабочей подаче 4,6 м³/ч и при максимальной рабочей подаче 12,3 м³/ч соответственно. Как видно, с увеличением расхода жидкости в проточной полости уменьшается количество массообменных потоков между колесом и боковым каналом, нарушается спиралевидное окружное движение жидкости в насосе, и, как следствие, снижается передача энергии от лопастей к жидкости.

Сравнение расчетных характеристик вихревого насоса с экспериментальными данными [6] показало их хорошее качественное и удовлетворительное количественное соответствие (рис. 4). Средняя погрешность расчета напора составила 10.8%, а гидравлического КПД — 14.5%. Наибольшие отклонения результатов моделирования от данных, полученных в ходе стендовых испытаний, отмечены в диапазоне подач от минимальной рабочей $(4.6 \text{ M}^3/\text{ч})$ до оптимальной $(10 \text{ M}^3/\text{ч})$.

В таблице 1 представлены результаты исследования для 14 вариантов исполнения лопастей колеса — относительные изменения напора ΔH и КПД $\Delta \eta$ вихревого насоса по отношению к напору и КПД при исходной конструкции.

Рис. 3. Линии тока в вихревом насосе при минимальной рабочей подаче 4,6 м³/ч (слева) и при максимальной рабочей подаче 12,3 м³/ч (справа)

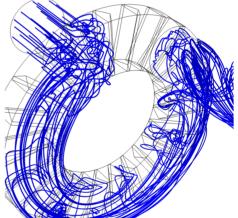
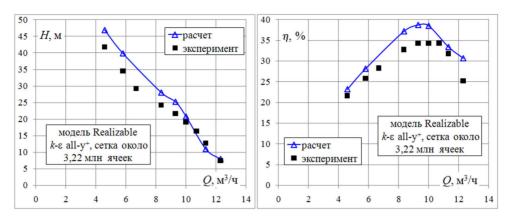



Fig. 3. The current lines in the vortex pump with a minimum operating flow of 4.6 m³/h (left) and a maximum operating flow of 12.3 m³/h (right)

Puc. 4. Зависимость напора и КПД вихревого насоса от подачи

Fig. 4. Dependence of the pressure and efficiency of the vortex pump on the flow

Таблица 1

Относительные изменения напора ΔH и гидравлического КПД $\Delta \eta$ вихревого насоса при различном исполнении лопастей колеса по отношению к напору и КПД при исходной конструкции (подача $10 \text{ м}^3/\text{ч}$)

Table 1

Relative changes in the head ΔH and hydraulic efficiency $\Delta \eta$ of a vortex pump with different versions of the impeller blades in relation to the head and efficiency with the original design (the flow rate $10\ m^3/h)$

Варианты исполнения лопастей колеса вихревого насоса	Примечание	ΔН, %	Δη, %
1	2	3	4
2 0 0	исходный профиль лопасти	_	
Q AO	исходный профиль лопасти, в колесе соосно валу установлена кольцевая пластина шириной 2 мм и толщиной 1 мм	-3,3	-0,9

Вестник Тюменского государственного университета

Продолжение таблицы 1

Table 1 (continued)

1	2	3	4
Q AO	исходный профиль лопа- сти, в колесе соосно валу установлена кольцевая пластина шириной 7 мм и толщиной 1 мм	-12	-2,7
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	исходный профиль лопа- сти со скосом на стороне нагне- тания	-11,3	-3,8
Q AO	исходный профиль с круглым отверстием в лопасти	-7,2	-2,3
Q 03.	профиль в виде равнобедренно-го треугольника с основанием 4 мм (вершина со стороны входа в насос)	-39,4	-9,8
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	профиль в виде четырехугольника (скосы на стороне нагнетания лопасти)	-10,9	-3,3

Продолжение таблицы 1

Table 1 (continued)

1	2	3	4
Q & & & & & & & & & & & & & & & & & & &	профиль в виде равнобедренного треугольника с основанием 4 мм (вершина со стороны выхода из насоса)	5,2	2,7
Q & & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	исходный профиль со скруглением лопасти на стороне всасывания (радиус 5 мм)	9,1	3,1
2 30 2 00	исходный профиль со скруглением лопасти на стороне всасывания (радиус 10 мм)	20,6	5,7
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	исходный профиль со скруглением лопасти на стороне всасывания (радиус 15 мм)	6,9	4,3
2 0	профиль в виде равнобедренно-го треугольника с основанием 2 мм (вершина со стороны выхода из насоса)	4,6	4,6

Вестник Тюменского государственного университета

Окончание таблицы 1

Table 1 (end)

1	2	3	4
2 0 15	профиль в виде прямоугольного треугольника со скруглением лопасти на стороне всасывания (выпуклый профиль)	18,3	5
Q \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	профиль в виде прямоугольного треугольника со скруглением лопасти на стороне всасывания (вогнутый профиль)	20,6	3,9

На основе верифицированной математической модели течения авторами исследовано качественное влияние формы и размеров профиля лопасти на напор и коэффициент полезного действия вихревого насоса открытого типа с открытым боковым каналом при оптимальной подаче ($10 \text{ м}^3/\text{ч}$). Погрешность расчета напора для исходной конструкции лопастного колеса на этом режиме работы насоса составила 2,5%, а гидравлического КПД — 9,3%.

Обсуждение

Обнаружено, что к существенному росту напора (более 20%) приводит применение: профиля в виде прямоугольного треугольника; исходного профиля со скруглением лопасти на стороне всасывания (радиус 10 мм); а также профиля в виде прямоугольного треугольника со скруглением лопасти на стороне всасывания (вогнутый профиль). Примечательно, что почти во всех рассмотренных вариантах относительное изменение значения гидравлического КПД не превысило погрешности его расчета. Минимальные значения напора и КПД зафиксированы при использовании профиля в виде равнобедренного треугольника с основанием 4 мм (вершина со стороны входа в насос): –39,4% и –9,8% соответственно, по сравнению с исходным вариантом.

Заключение

Таким образом, в настоящей работе подтверждена возможность использования численного моделирования течения на основе предложенной математической модели для качественной оценки влияния различных геометрических параметров

вихревого насоса открытого типа с открытым боковым каналом на его напорную и энергетическую характеристики. Получение данной информации, в свою очередь, может поспособствовать последующей оптимизации конструкции рассматриваемых насосов.

Исследовано качественное влияние формы и размеров профиля лопасти на напор и коэффициент полезного действия вихревого насоса при оптимальной подаче. Выявлены варианты исполнения лопастей колеса, приводящие как к увеличению напора (например, профили в виде прямоугольника с выпуклым скруглением лопасти на стороне всасывания радиусом 10 мм и прямоугольного треугольника с вогнутым скруглением лопасти на стороне всасывания радиусом 52 мм и без скругления), так и к его снижению (например, профиль лопасти в виде четырехугольника). Тем не менее ни в одном из рассмотренных случаев не обнаружено существенного повышения гидравлического КПД вихревого насоса, что обуславливает необходимость проведения дополнительных исследований с целью уточнения полученных результатов моделирования и подтверждения ограничения КПД вихревого насоса.

СПИСОК ЛИТЕРАТУРЫ

- 1. Байбаков О. В. Вихревые гидравлические машины / О. В. Байбаков. М.: Машиностроение, 1981. 197 с.
- 2. Appiah D. Effects of the geometrical conditions on the performance of a side channel pump: a review / D. Appiah, F. Zhang, S. Yuan, M. K. Osman // International Journal of Energy Research. 2018. Vol. 42. No. 2. Pp. 416-428.
- 3. Fleder S. Influence of gas-liquid multiphase-flow on acoustic behavior and performance of side channel pumps / S. Fleder, F. Hassert, M. Böhle, B. Zientek-Strietz // American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM. 2017. Vol. 1A-2017. Art. FEDSM2017-69094, V01AT05A006.
- 4. Zhang F. Effect of suction side blade profile on the performance of a side channel pump / F. Zhang, A. Fleder, M. Böhle, S. Yuan // Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2016. Vol. 230. No. 6. Pp. 586-597.
- 5. Zhang F. Experimental investigation on the performance of a side channel pump under gas-liquid two-phase flow operating condition / F. Zhang, M. Böhle, S. Yuan // Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2017. Vol. 231. No. 7. Pp. 645-653.
- 6. Zhang F. Numerical delineation of 3D unsteady flow fields in side channel pumps for engineering processes / F. Zhang, K. Chen, D. Appiah, B. Hu, S. Yuan, S. N. Asomani // Energies. 2019. Vol. 12. No. 12. Art. 1287.
- Zhang F. Transient flow characterization in energy conversion of a side channel pump under different blade suction angles / F. Zhang, D. Appiah, J. Zhang, S. Yuan, M. K. Osman, K. Chen // Energy. 2018. Vol. 161. Pp. 635-648.

Aleksei V. BOLDYREV¹ Sergei V. BOLDYREV² Dmitrii L. KARELIN³

UDC 004.942:621.65

THE EFFECT OF BLADE PROFILE ON THE PERFORMANCE OF A SIDE CHANNEL PUMP

- ¹ Cand. Sci. (Tech.), Associate Professor, Department of High-Energy Processes and Aggregates, Naberezhnye Chelny Institute (Branch) of the Kazan Federal University (Naberezhnye Chelny) alexeyboldyrev@mail.ru; ORCID: 0000-0002-6184-9943
- ² Cand. Sci. (Tech.), Associate Professor, Department of High-Energy Processes and Aggregates, Naberezhnye Chelny Institute (Branch) of the Kazan Federal University (Naberezhnye Chelny) underminder@mail.ru; ORCID: 0000-0003-3596-0565
- ³ Cand. Sci. (Tech.), Associate Professor, Department of High-Energy Processes and Aggregates, Naberezhnye Chelny Institute (Branch) of the Kazan Federal University (Naberezhnye Chelny) karelindl@mail.ru; ORCID: 0000-0003-1479-633X

Abstract

This article presents the results of a numerical modeling of a steady turbulent flow of an incompressible fluid in an open-type vortex pump with an open side channel, comparing the generalized simulation results with the existing experimental data. The mathematical model is based on the Reynolds-averaged Navier — Stokes and continuity equations, as well as on the equations of the two-layer Realizable k- ϵ turbulence model that accounts for the curvature

Citation: Boldyrev A. V., Boldyrev S. V., Karelin D. L. 2020. "The effect of blade profile on the performance of a side channel pump". Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, vol. 6, no. 3 (23), pp. 23-37.

DOI: 10.21684/2411-7978-2020-6-3-23-37

of streamlines. The authors have estimated the grid independence of the solution and studied the influence of 14 blade profiles on the head and efficiency of the vortex pump.

The solution of the model equations was achieved by the finite volume method using a sequential algorithm in three calculation areas ("feeder channel", "blade wheel", "open hull side channel and diverter channel") with the evaluation of grid independence of the solution. The result of the solution between the calculated areas was transmitted at the corresponding points of the interface surfaces.

The authors have studied the influence of 14 profiles of a blade on pressure and efficiency of the vortex pump: the initial profile of the blade with the installation in the wheel coaxial shaft of the ring plate of different width, the initial profile of the blade with a bevel on the discharge side, a profile in the form of an isosceles triangle, a profile in the form of a quadrangle, the initial profile with a rounded blade on the suction side, and a profile in the form of a rectangular triangle with a rounded blade on the suction side, among others.

The simulation results have aided in proposing the blade profiles: in the form of a rectangle with a convex rounding of the blade on the suction side with a 10 mm radius and a right-angled triangle with a concave rounding of the blade on the suction side with a 52 mm radius and without rounding, giving a significant increase in pressure — more than 20%. Nevertheless, none of the considered cases have revealed any significant increase in the vortex pump hydraulic efficiency.

Keywords

Side channel pump, numerical simulation, steady turbulent flow, math-model, performance, vortex pump blades, pressure.

DOI: 10.21684/2411-7978-2020-6-3-23-37

REFERENCES

- 1. Baibakov O. V. 1981. Vortex Hydraulic Machines. Moscow: Mashinostroenie. 197 pp. [In Russian]
- 2. Appiah D., Zhang F., Yuan S., Osman M. K. 2018. "Effects of the geometrical conditions on the performance of a side channel pump: a review". International Journal of Energy Research, vol. 42, no. 2, pp. 416-428.
- Fleder S., Hassert F., Böhle M., Zientek-Strietz B. 2017. "Influence of gas-liquid multiphase-flow on acoustic behavior and performance of side channel pumps".
 American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, vol. 1A-2017, art. FEDSM2017-69094, V01AT05A006.
- 4. Zhang F., Fleder A., Böhle M., Yuan S. 2016. "Effect of suction side blade profile on the performance of a side channel pump". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 230, no. 6, pp. 586-597.
- Zhang F., Böhle M., Yuan S. 2017. "Experimental investigation on the performance of a side channel pump under gas-liquid two-phase flow operating condition". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 231, no. 7, pp. 645-653.

- 6. Zhang F., Chen K., Appiah D., Hu B., Yuan S., Asomani S. N. 2019. "Numerical delineation of 3D unsteady flow fields in side channel pumps for engineering processes". Energies, vol. 12, no. 12, art. 1287.
- 7. Zhang F., Appiah D., Zhang J., Yuan S., Osman M. K., Chen K. 2018. "Transient flow characterization in energy conversion of a side channel pump under different blade suction angles". Energy, vol. 161, pp. 635-648.