На правах рукописи

Русейкина Анна Валерьевна

СТРУКТУРА СОЕДИНЕНИЙ EuLnCuS₃ (Ln = La-Nd, Sm), ФАЗОВЫЕ ДИАГРАММЫ СИСТЕМ Cu₂S-EuS, EuS-Ln₂S₃, EuS-Ln₂S₃-Cu₂S (Ln = La, Nd, Gd), ТЕРМОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФАЗОВЫХ ПРЕВРАЩЕНИЙ

02.00.04 – физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Тюмень – 2011

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Тюменский государственный университет» на кафедре неорганической и физической химии

НАУЧНЫЙ РУКОВОДИТЕЛЬ: *доктор химических наук, профессор Андреев Олег Валерьевич*

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ: доктор химических наук, профессор Жихарева Ирина Георгиевна

> кандидат химических наук Паршуков Николай Николаевич

ВЕДУЩАЯ ОРГАНИЗАЦИЯ:

ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Защита диссертации состоится «07» декабря 2011 года в 16 часов 00 минут на заседании диссертационного совета ДМ212.274.11 при ФГБОУ ВПО «Тюменский государственный университет» по адресу: 625003, г. Тюмень, ул. Перекопская, 15а, аудитория 410

С диссертацией можно ознакомиться в информационно-библиотечном центре ФГБОУ ВПО «Тюменский государственный университет»

Автореферат разослан «07» ноября 2011 года

Ученый секретарь диссертационного совета кандидат химических наук

Ларина Н.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Экспериментальное построение фазовых диаграмм позволяет получить сведения об условиях существования состояния соединений, а также создает предпосылки для исследования гомогенных фаз, их пространственных структур и физико-химических свойств с целью создания новых материалов. Системы EuS-Ln₂S₃-Cu₂S перспективны в связи с образованием новых сложных сульфидов, полученных из сульфидов d- и fэлементов. Сведений об изучении данных тройных систем не обнаружено. Фазовая диаграмма системы Cu₂S-EuS не изучалась. В системах Ln₂S₃-EuS образуется сложный сульфид EuLn₂S₄. Температуры и характер плавления соединений EuLn₂S₄ не известны. Сведений о построении фазовых диаграмм систем Ln_2S_3 -EuS не обнаружено. В системах Cu_2S - Ln_2S_3 образуются сложные сульфиды LnCuS₂. Теплоты плавления соединений не определены.

Для реализации потенциальных возможностей сульфидных соединений надо, на основе данных по фазовым диаграммам, определить условия получения образцов фаз в необходимом состоянии. Имеются сведения о кристаллохимических характеристиках сложных сульфидов SrLnCuS₃, BaLnCuS₃, PbLnCuS₃, MCuSbS₃ (M = Pb, Eu, Yb), EuLnCuS₃ (Ln = Gd-Lu), изучены электрофизические и магнитные свойства. Соотношение ионных радиусов семикоординированных ионов rSr²⁺: rPb²⁺: rEu²⁺ = 1.21: 1.23: 1.20 Å позволяет прогнозировать образование соединений EuLnCuS₃ (Ln = La-Sm).

Построение фазовых диаграмм ранее не изученных систем, как научной основы создания новых материалов с заданными свойствами, установление закономерностей фазообразования и изменения свойств сложных соединений, определение рентгенометрических и физико-химических характеристик новых соединений, установление их структуры, термохимических характеристик фазовых превращений определяют актуальность настоящей работы.

Цель работы состоит в изучении фазовых равновесий в системах EuS– Ln_2S_3 – Cu_2S (Ln = La, Nd, Gd) по изотермическим и политермическим сечениям, в получении и установлении структур новых соединений EuLnCuS₃ (Ln = La-Nd, Sm), в определении термохимических характеристик фазовых превращений в системах Cu₂S–EuS, Ln_2S_3 –EuS, Cu_2S – Ln_2S_3 , EuS– Ln_2S_3 –Cu₂S (Ln = La-Nd, Sm, Gd).

Задачи исследования:

- 1. Определить условия достижения равновесного состояния при отжиге литых образцов в системах Cu₂S-EuS, Ln₂S₃-EuS, EuS-Ln₂S₃-Cu₂S (Ln = La-Nd, Sm, Gd) и получения гомогенных образцов соединения EuLaCuS₃ в порошкообразном состоянии.
- 2. Построить фазовые диаграммы систем Cu_2S -EuS, Ln_2S_3 -EuS (Ln = La, Nd, Gd).
- 3. Определить рентгенометрические характеристики новых сложных сульфидов в системах EuS-Ln₂S₃-Cu₂S (Ln = La-Nd, Sm), их структурные и физико-химические характеристики.

- 4. Установить положение конод, выделить подчиненные треугольники в системах $EuS-Ln_2S_3-Cu_2S$ (Ln = La, Nd, Gd) при 970 K, построить фазовые диаграммы систем $LnCuS_2-EuS$, $Cu_2S-EuLnCuS_3$ (Ln = La, Nd).
- 5. Определить термохимические характеристики фазовых превращений в системах Cu_2S -EuS, Cu_2S -Ln₂S₃, EuS-Ln₂S₃-Cu₂S (Ln = La-Nd, Sm, Gd).
- 6. Установить положение полей первичной кристаллизации фаз в системах EuS-Ln₂S₃-Cu₂S (Ln = La, Nd), положение изотерм, составить схемы нонвариантных фазовых превращений на поверхности ликвидуса.

Научная новизна:

1. Впервые получены соединения EuLnCuS₃ (Ln = La-Nd, Sm), в ряду которых выявлены три типа кристаллических структур ромбической сингонии с симметрией *Pnma*. Соединения EuLaCuS₃, EuCeCuS₃ не образуют полиморфных модификаций и принадлежат к структурному типу (CT) Ba₂MnS₃ (EuLaCuS₃ a = 8.1297; b = 4.0625; c = 15.9810 Å). Соединения EuPrCuS₃, EuNdCuS₃ имеют две полиморфные модификации: высокотемпературную - CT Ba₂MnS₃ и низкотемпературную, изоструктурную BaLaCuS₃ (EuNdCuS₃: a = 11.0438; b = 4.0660; c = 11.4149 Å). Соединение EuSmCuS₃ изоструктурно Eu₂CuS₃.

2. Впервые изучены фазовые равновесия в системах Cu₂S-EuS, EuS-Ln₂S₃, EuS-Ln₂S₃-Cu₂S (Ln = La, Nd, Gd). Фазовые диаграммы систем Cu₂S-EuS, Cu_2S -EuLnCuS₃ (Ln = La, Nd) эвтектического типа с образованием открытой области твердого раствора на основе β -Cu₂S, α -Cu₂S и закрытой на основе γ - Cu_2S . В системах EuS–Ln₂S₃ (Ln = La, Nd, Gd) имеется конгрузнтно плавящееся соединение EuLn₂S₄, область твердого раствора у-Ln₂S₃-EuLn₂S₄, эвтектика между фазами EuLn₂S₄–EuS. Фазовые диаграммы систем LnCuS₂–EuS (Ln = La, Nd) с образованием инкогрузнтно плавящегося соединения $EuLnCuS_3$ и областью твердого раствора на основе EuS. Разрезы в системах EuS-Ln₂S₃-Cu₂S (Ln = La, Nd) являются частично квазибинарными. Составлены балансные уравнения И определены теплоты фазовых превращений. Теплоты эвтектических фазовых превращений находятся в пределах 38-12 Дж/г. В системах EuS-Ln₂S₃-Cu₂S (Ln = La, Nd) построены поверхности ликвидуса и установлено положение полей первичной кристаллизации фаз γ-Cu₂S, β-Cu₂S, EuS, Ln₂S₃(EuLn₂S₄), LnCuS₂, EuLnCuS₃.

3. Для соединений EuLnCuS₃ CT Ba₂MnS₃ наблюдается понижение температур и теплот инконгруэнтного плавления: EuLaCuS₃ 1539 K, 52 Дж/г; EuCeCuS₃ 1524 K, 53 Дж/г; EuPrCuS₃ 1497 K, 44 Дж/г; EuNdCuS₃ 1470 K, 39 Дж/г. Для соединений EuLnCuS₃ CT Eu₂CuS₃ – увеличение температур плавления: EuSmCuS₃ 1583 K, 11 Дж/г; EuGdCuS₃ 1720 K, 8 Дж/г. Для соединений LnCuS₂ моноклинной структуры типа CuLaS₂ установлено понижение термической устойчивости и теплот фазовых превращений: LaCuS₂ 1471 K, 93 Дж/г; CeCuS₂ 1465 K, 46 Дж/г; PrCuS₂ 1455 K, 52 Дж/г; NdCuS₂ 1429 K, 51 Дж/г; SmCuS₂ 1432 K, 35 Дж/г; GdCuS₂ 1352 K, 23 Дж/г.

Практическая значимость. Построенные фазовые диаграммы и полученные данные по фазовым превращениям являются справочным

материалом и опубликованы в открытой печати. Метрические характеристики фазовых диаграмм, установленные температуры и характер плавления соединений являются основой для определения условий получения образцов заданных составов в необходимом состоянии. Впервые установленные рентгенометрические и физико-химические характеристики полиморфных модификаций соединений EuLnCuS₃ (Ln = La-Nd, Sm), являются справочным материалом. Определены условия получения гомогенных образцов соединений EuLnCuS₃ в порошкообразном и литом состоянии. Построенные поверхности ликвидуса в тройных системах позволяют подобрать методы, условия проведения экспериментов для уточнения температур ликвидуса заданного состава. Определены составы и температуры получения кристаллов EuLnCuS₃ из расплава.

Достоверность экспериментальных данных обеспечивается применением адекватных физико-химических методов с использованием современного, поверенного оборудования, при согласованности результатов в параллельных опытах. Использовано современное программное обеспечение.

На защиту выносятся:

- 1. Впервые установленные рентгенометрические и структурные параметры сложных сульфидов EuLnCuS₃ (Ln = La-Nd, Sm); наличие низкотемпературной модификации (CT BaLaCuS₃) и высокотемпературной (CT Ba₂MnS₃) для соединений EuPrCuS₃, EuNdCuS₃; закономерности изменения кристаллографических и физико-химических характеристик сложных сульфидов, коррелирующие с изменением ионного радиуса Ln³⁺.
- 2. Фазовые диаграммы систем: Cu_2S -EuS, Ln_2S_3 -EuS, $LnCuS_2$ -EuS, Cu_2S -EuLnCuS₃ (Ln = La, Nd); фазовые равновесия в системах EuS-Ln₂S₃-Cu₂S (Ln = La, Nd, Gd) при 970 К.
- 3. Закономерности изменения температур и теплот инконгруэнтного плавления соединений EuLnCuS₃ (Ln = La-Nd) со структурой типа Ba₂MnS₃, температур плавления EuLnCuS₃ (Ln = Sm, Gd) со структурой типа Eu₂CuS₃, теплот фазовых превращений и термической устойчивости соединений LnCuS₂ (Ln = La-Nd, Sm) моноклинной структуры типа CuLaS₂.
- 4. Балансные уравнения, значения теплот и температур эвтектических и инконгруэнтных фазовых превращений в системах Cu_2S -EuS, Cu_2S -Ln₂S₃, EuS-Ln₂S₃-Cu₂S (Ln = La, Nd, Gd).
- 5. Поверхности ликвидуса систем $EuS-Ln_2S_3-Cu_2S$ (Ln = La, Nd), поля первичной кристаллизации фаз γ -Cu₂S, β -Cu₂S, EuS, Ln₂S₃(EuLn₂S₄), LnCuS₂, EuLnCuS₃.
- 6. Способ получения порошка соединения EuLaCuS₃ из шихты, содержащей микро- и наноразмерные частицы.

Апробация работы. Материалы диссертационной работы представлены на Всероссийской научной конференции «Химия твердого тела и функциональные материалы» (Екатеринбург, 21-24 октября 2008); XLVII Международной научной студенческой конференции «Студент и научно-технический прогресс»

(Новосибирск, 12-15 апреля 2009); VI Международной конференции студентов и молодых ученых «Перспективы развития фундаментальных наук» (Томск, 26-29 мая 2009); XVII International Conference on Chemical Thermodynamics (Kazan, 29 June - 3 July 2009); Региональной научной-практической конференции «Нанотехнологии в Тюменской области: проблемы правовой охраны и коммерциализации» (Тюмень, 30-31 октября 2009); Седьмом семинаре СО РАН - УрО РАН «Термодинамика и материаловедение» (Новосибирск, 2-5 февраля 2010); XIX-XXI Российской молодежной научной конференции «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 20-24 апреля 2010, апреля 2011); XXIII Российской конференции по электронной 19-23 микроскопии (Черноголовка, 31 мая – 4 июня 2010); IX Международном Курнаковском совещании по физико-химическому анализу (Пермь, 5-9 июля 2010); Конференции РХО им. Д.И. Менделеева «Инновационные химические технологии и биотехнологии новых материалов и продуктов» (Москва, 28-29 сентября 2010); V Всероссийской конференции «Физико-химические процессы в конденсированных средах и на межфазных границах – ФАГРАН-2010» 2010); Всероссийской научной октября (Воронеж, 3-8 конференции «Актуальные проблемы химии. Теория и практика» (Уфа, 21-23 октября 2010); Международной научной конференции «Химия твердого тела: наноматериалы, нанотехнологии» (Ставрополь, 17-22 октября 2010); III Международном форуме по нанотехнологиям (Москва, 1-3 ноября 2010).

Публикации. Результаты исследований опубликованы в 33 научных работах: 4 статьи в журналах, рекомендованных ВАК, статьи в трудах конференций, в сборнике трудов университета, тезисы докладов. Результаты работы вошли в лабораторный практикум «Дифференциальный термический анализ и калориметрия», который используется в учебном процессе магистратуры кафедры неорганической и физической химии ТюмГУ.

Работа выполнена при финансовой поддержке ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009-2013 гг., ГК 6к/143-09 (П 646).

Личный вклад автора заключался в участии совместно с руководителем в постановке задач и выборе объектов исследования. Результаты, представленные в работе, получены самим автором, либо при его непосредственном участии.

Структура и объем работы. Диссертация состоит из введения, четырех глав, выводов, списка литературы (191 источник), приложения. Работа изложена на 166 страницах, приложение включает 60 рисунков и 6 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы и практическая значимость диссертации, сформулирована цель работы, указаны основные научные результаты и положения, выносимые на защиту.

В первой главе обобщены литературные данные по фазовым равновесиям в двойных и тройных системах Cu–S, Eu–S, Ln–S, Cu₂S–Ln₂S₃, EuS–Ln₂S₃, Cu_2S -EuS, AS-Ln₂S₃-Cu₂S (A = Sr, Ba, Eu, Pb; Ln = La-Lu), по кристаллографическим и физико-химическим характеристикам, свойствам простых и сложных сульфидов. Проанализированы основные методы расчета эвтектических концентраций и температур диаграмм состояния бинарных и тройных систем.

Вторая глава посвящена описанию методов получения сульфидных соединений и физико-химических методов анализа исследуемых систем. Соединение Cu₂S получено из элементарных Cu и S методом прямого синтеза, в двойных вакуумированных и запаянных кварцевых ампулах. Сульфиды РЗЭ синтезированы косвенным методом из оксидов в потоке H₂S и CS₂ при 1270-1370 К в течение 5-15 ч. Сульфидирование проводили до исчезновения на рентгенограммах рефлексов оксисульфидных фаз. В пределах погрешности химического анализа сульфиды имеют стехиометрический состав.

Образцы заданных составов получены сплавлением исходных сульфидов Cu_2S , EuS и Ln_2S_3 : в графитовых тиглях, находящихся в вакуумированных и запаянных кварцевых ампулах в печи электронагрева при температурах 1170-1580 К; в графитовых тиглях, в течение 2 мин по 3 цикла на установке токов высокой частоты в атмосфере аргона и паров серы при давлении 1 атм. Образцы отжигались: в атмосфере аргона и паров серы при температуре 1770 К в течение 30 мин; в вакуумированных и запаянных кварцевых ампулах при 1450-1520 К в течение 3 ч, 970-1170 К в течение 720-3000 ч, 770 К в течение 6-8 месяцев, 520-350 К в течение 2-3 лет. В процессе отжига контролировали фазовый состав и микротвердость образцов.

Физико-химические методы анализа. Рентгенофазовый анализ (РФА) проводили на дифрактометре «ДРОН-7» с использованием СиК_α-излучения, Niрасчетов и построения зависимости «состав-параметр фильтр. Для элементарной ячейки» применяли программный комплекс «PDWin 4.0». Рентгенографические исследования соединений $EuLnCuS_3$ (Ln = La-Nd, Sm) проведены на дифрактометре «PANalytical X'Pert PRO», оснащенным детектором PIXcel и графитовым монохроматором, с использованием СоК_а – и СиК_а – излучения. Порошковые образцы приготовлены путем растирания с добавлением октана в агатовой ступке. Рентгенограммы сняты в интервале углов дифракции 10°≤20≤125(145)°. Параметры решетки EuLnCuS₃ определены с помощью программы «ITO». Кристаллические структуры уточнены по порошковым данным методом минимизации производной разности (МПР) с факторами достоверности, лежащих в интервале R-DDM = 4.77-8.73 %, R_{Bragg} = 4.39-4.70 %, R_F = 2.03-3.26 %. В качестве исходных моделей использованы данные для изоструктурных соединений LaPbCuS₃, BaLaCuS₃ и Eu₂CuS₃. Для визуализации кристаллических структур использовали пакет программного обеспечения «Diamond 3». Дифференциальную сканирующую калориметрию (ДСК) применяли для построения линий ликвидуса, солидуса, определения температур и теплот фазовых превращений, координат нонвариантных точек. ДСК проводили на установке «Setsys Evolution 1750 (TGA – DSC 1600)» с

использованием программного комплекса «Setsoft Software 2000», термопар PtRh 6%-PtRh 30% (работает в интервале 420-1870 К); Pt/PtRh 10% (220-1870 Разделение накладывающихся пиков осуществлялось в программе К). «Thermogram Analyser». Погрешность в определении температур 0.3 %. Визуально-политермический анализ (ВПТА) использовали для определения температур плавления сложных сульфидов EuLn₂S₄, температур солидуса и ликвидуса высокотемпературной области систем Cu_2S -EuS, Ln_2S_3 -EuS, LnCuS₂-EuS. ВПТА выполнен на оригинальной установке ТюмГУ, с при нахождении пробы в молибденовом тигле. термопарой ВР 5/20 Погрешность определения температуры 1.5 % от измеряемой величины. Микроструктурный анализ (МСА) проводили на полированных образцах с использованием оптических металлографических микроскопов: «МЕТАМ РВ-22» и «Olympus GX-71» для установления последовательности кристаллизации, характера плавления, количества фаз, границ твердых растворов (ТР), размера зерен первичных и эвтектических кристаллов, состава эвтектик. Растровый электронный микроскоп (РЭМ) «Philips SEM 515» и систему с электронным и сфокусированным ионным пучками «Quanta 200 3D» использовали для топографического и энергодисперсионного анализов литых проб образцов $EuLnCuS_3$ (Ln = La-Nd, Sm, Gd), оксидных прекурсоров и порошкообразных проб EuLaCuS₃, полученных на разных этапах сульфидирования. Зондовую нанолабораторию «Ntegra», управляемую посредством программы «Nova» в операционной системе Windows XP, использовали для исследования морфологии поверхности соединений EuLnCuS₃, изменения формы и размера зерен в процессе получения EuLaCuS₃ в порошкообразном состоянии. Графические построения двух- и трехкомпонентных систем выполнены в компьютерных программах «Edstate 2D» и «Edstate 3D». Ветви линии ликвидус и солидус построены при аппроксимации данных ДСК полиномами второй и третьей степени в программе «Edstate 2D». Дюрометрический анализ (ДМА) проводили на приборе «ПМТ-3М» методом Виккерса. Нагрузка на инденторе 20-40 г. Погрешность определения микротвердости 5 % от измеряемой величины.

Третья глава посвящена описанию структур, физико-химических характеристик соединений EuLnCuS₃ (Ln = La-Nd, Sm).

Закономерности образования соединений EuLnCuS₃ (Ln = La-Nd, Sm) в процессе отжига. Построена зависимость выхода EuLaCuS₃ α (%) от времени τ (ч) при 970 K, 100% выход соединения EuLaCuS₃ наблюдается около 3000 ч. Для соединений EuLnCuS₃ (Ln = Ce-Nd, Sm) после 1440 ч. отжига содержание примесных фаз составляет: 0.6-1.7 % EuS; 1.0-4.0 % LnCuS₂; 2.1-4.6 % Eu₂CuS₃; 0.6-2.1 % Eu₃S₄; 0.8 % Sm₃S₄.

Кристаллические структуры соединений EuLnCuS₃ (Ln = La-Nd, Sm) определены при 1170 К, 970 К, 770 К (табл. 1, 2; рис. 1). В ряду соединений EuLnCuS₃ (Ln = La-Nd, Sm) выявлены три типа кристаллических структур ромбической сингонии с симметрией *Pnma* (рис. 2). Соединения EuLaCuS₃,

EuCeCuS₃ не образуют полиморфных модификаций и принадлежат к СТ Ва₂MnS₃. Соединения EuPrCuS₃, EuNdCuS₃ имеют лве полиморфные модификаций: высокотемпературную СТ Ва₂MnS₃ и низкотемпературную СТ BaLaCuS₃. Ориентировочно температура полиморфного перехода принята равной 1070 К. Полиморфные переходы не зафиксированы методом ДСК и скорее всего относятся к медленным переходам. Соединение EuSmCuS₃ изоструктурно Eu₂CuS₃. Обнаруженные кристаллические модификации, условно обозначены: α-EuLnCuS₃ CT Ba₂MnS₃; β-EuLnCuS₃ CT BaLaCuS₃; γ-EuLnCuS₃ CT Eu₂CuS₃.

Рисунок 1. Экспериментальные (сплошные линия), расчетные (пунктир) и разностные (точки) дифрактограммы проб образцов EuLnCuS₃ после уточнения структуры методом MПР: A - EuLaCuS₃ (CT Ba₂MnS₃); Б – EuNdCuS₃ (CT BaLaCuS₃); В – EuSmCuS₃ (CT Eu₂CuS₃). СоКα – излучение. Положения пиков основной фазы показаны штрихами

Для соединений EuLnCuS₃ всех структурных типов характерно слоистоблочное строение. Искаженные тетраэдры CuS₄, сочлененные вершинными атомами, образуют непрерывные цепочки вдоль оси *b*. Ионы P3Э расположены между цепочками CuS₄. В соединениях α-EuLnCuS₃ (Ln = La-Nd) отжиг 1170 K, β-EuLnCuS₃ (Ln = Pr, Nd), γ-EuSmCuS₃ ионы Eu²⁺ и Ln³⁺ занимают две независимые кристаллографические позиции, а в α-EuLnCuS₃ (Ln = La, Ce) отжиг 970 К – разупорядочены по двум позициям. В соединениях EuLnCuS₃ (Ln = La-Nd) все лантаниды координированы семью атомами серы. В структуре EuSmCuS₃ атом Eu координирован семью атомами серы, а Sm – шестью.

Таблица 1

Координаты, тепловые параметры и заполняемость позиций атомов в структурах EuLnCuS₃

EuLaCuS ₃														
	Отжиг 970 К								Отжиг 1170 К					
Атс	OM	x	у	Z	Заполня	Заполняемость (Атом	x	У	Z		Uиз	0, Å ²
Eu(1) 0.2	0.2536(3) 0.25 0.0383(1) 0.55(5)		5(5)	0.012(1)	La	0.2536(2) 0.25	0.038	01(7)	0.01	3(1)		
Eu(2	2) 0.0	908(3)	0.25	0.7851(1) 0.45	5(5)	0.013(1)	Eu	0.0904((2) 0.25	0.785	02(7)	0.01	12(1)
La(1) 0.2) 0.2536(3) 0.25 0.0383(1) 0.45(5)		5(5)	0.012(1)	Cu	0.1186((3) 0.25	0.366	66(2)	0.01	18(1)		
La(2	2) 0.0	908(3)	0.25	0.7851(1) 0.55	5(5)	0.013(1)	S1	0.0143((5) 0.25	0.599	90(3)	0.00	08(1)
Cu	Cu 0.1180(6) 0.25		0.25	0.3661(3) 1	1	0.025(2)	S2	0.1797((6) 0.25	0.22	10(3)	0.01	10(2)
S (1)) 0.0	14(1)	0.25	0.6002(5) 1		0.017(3)	S3	0.3806((6) 0.25	0.428	86(3)	0.01	17(2)
S(2)) 0.1	0.181(1) 0.25 0.2194(6) 1			0.011(2)						<u> </u>			
S(3)) 0.3	81(1)	0.25	0.4291(5) 1		0.012(2)						L	
	EuNdCuS ₃													
		1	()тжиг 970 K		07			Отжиг 1		170 К		° 1	
	Атом		x	<i>y</i>	<i>Z</i>	<i>U</i> изо, А ²	Атом	<i>x</i>	<i>y</i>	Z	1 (2)	<u> </u>	A^2	
	Eu 0.31657(<u>557(8)</u>	0.25	-0.0043(1)	0.013(1)	Nd	0.2533	(2) 0.25	0.0381	1(9) ().012(2)	
	Nd	Nd 0.48933(7) 0.25 0.31725(9) 0		0.013(1)	Eu	0.0887	(2) 0.25	0.7852	2(1) ().008(2)			
	Cu	0.24	43(2)	0.25	0.7129(2)	129(2) 0.020(2		0.1176	(4) 0.25	0.3667	7(2) (<u>).016(</u>	2)	
	S(1)	0.223	35(3)	0.25	0.3084(3)	0.015(3)	S1	0.0160	(7) 0.25	0.5984	$\frac{1(4)}{(4)}$).012(2)	
	S(2)	0.38	49(3)	0.25	0.5579(3)	0.013(3)	<u>S2</u>	0.1814	(7) 0.25	0.2218	$\frac{3(4)}{3(4)}$	$\frac{0.014}{0.015}$	2)	
ľ	S(3) 0.0488		88(3)	0.25	0.6396(3)	0.015(3)	<u> </u>	0.381/	(7) 0.25	0.4298	3(4)).015(2)	
				0	070 1/	EuSn	1CuS ₃	Ommun 1170 V						
	A	Отжиг 970 К					2 1 70	Отжиг 11/0 К				Lines	Å 2	
	ATOM En	0.79	$\frac{x}{40(2)}$	y	$\frac{Z}{0.0010(2)}$	0.01420	$\frac{A}{2}$ ATO	M 3	$\frac{x}{9(1)}$ 0 2	, 5 0.00	$\frac{z}{10(2)}$	<i>О</i> И30	(A)	
	Eu	0.78^{2}	$\frac{40(2)}{66(2)}$	0.25	0.0019(2)	0.0143	$\frac{8}{6}$ Sm	0.783	$\frac{100}{2}$	$\frac{5}{5}$ 0.00	$\frac{19(2)}{(2(1))}$	0.011	(1)	
}	Sm	0.010	$\frac{00(2)}{24(2)}$	0.25	0.7333(1)	0.0108($\frac{b}{b}$ Eu	0.010	$\frac{02(1)}{0.2}$	5 0.73	$\frac{03(1)}{22(2)}$	0.008	(1)	
}	$\frac{Cu}{S(1)}$	0.23	$\frac{34(3)}{92(6)}$	0.25	0.2223(3)	0.01/(1	$\frac{1}{10}$ Cu	0.234	$\frac{12(3)}{27(6)}$ 0.2	$\frac{5}{5}$ 0.22	$\frac{22(3)}{91(5)}$	0.015	$\frac{(2)}{(2)}$	
}	$\frac{S(1)}{S(2)}$	$\frac{5(1)}{2(2)} = 0.0000000000000000000000000000000000$		0.011(2	$\frac{1}{2}$	0.048	0(6) 0.2	$\frac{5}{5}$ 0.11	$\frac{01(3)}{31(5)}$	0.010	(3)			
	$\frac{S(2)}{S(3)}$	0.402	$\frac{+0(7)}{91(6)}$	0.25	0.1021(4) 0.8263(5)		$\frac{3}{2}$ $\frac{32}{52}$	0.404	(0) 0.2	5 0.10	$\frac{51(5)}{74(5)}$	0.010	$\frac{(3)}{(2)}$	
l	3(3)	5(3) = 0.2391(0) = 0.23 = 0.8203(3)		0.011(2	.) 55	0.200	2(1) 0.2	5 0.02	/ + (<i>J</i>)	0.013 Taƙ	<u>(4)</u>	a 2		
		-							~ ~ ~			140	лиц	л 4

Кристаллографические параметры соединений EuLnCuS₃ (Ln = La-Nd, Sm)

Соединение	EuL	aCuS ₃	EuCe	CuS ₃	EuPrCuS ₃		
Т _{отжига} , К	970	1170	970	1170	970	1170	
Пр. группа	Pnma	Pnma	Pnma	Pnma	Pnma	Pnma	
Структурный тип	Ba ₂ MnS ₃	Ba_2MnS_3	Ba ₂ MnS ₃	Ba_2MnS_3	BaLaCuS ₃	Ba_2MnS_3	
<i>a</i> , Å	8.1297(3)	8.1372(1)	8.0991(1)	8.1028(1)	11.0819(1)	8.0793(1)	
b, Å	4.0625(1)	4.0589(1)	4.03978(4)	4.0389(1)	4.07101(4)	4.0290(1)	
<i>c</i> , Å	15.9810(4)	15.9839(3)	15.8979(1)	15.9036(3)	11.4459(1)	15.8404(3)	
V, Å ³	527.80(3)	527.91(2)	520.16(1)	520.47(2)	516.38(1)	515.63(2)	
$d_{\text{выч.}}, \Gamma/\text{см}^3$	5.671	5.669	5.769	5.766	5.822	5.830	
Соединение	EuN	NdCuS ₃	EuSn	nCuS ₃			
Соединение Т _{отжига} , К	EuN 970	NdCuS ₃ 1170	EuSn 970	n CuS₃ 1170			
Соединение Т _{отжига} , К Пр. группа	Eu 970 <i>Pnma</i>	NdCuS ₃ 1170 <i>Pnma</i>	EuSn 970 Pnma	nCuS ₃ 1170 <i>Pnma</i>			
Соединение Т _{отжига} , К Пр. группа Структурный тип	EuN 970 Pnma BaLaCuS ₃	NdCuS ₃ 1170 <i>Pnma</i> Ba ₂ MnS ₃	EuSn 970 Pnma Eu ₂ CuS ₃	nCuS ₃ 1170 <i>Pnma</i> Eu ₂ CuS ₃			
Соединение Т _{отжига} , К Пр. группа Структурный тип <i>а</i> , Å	EuN 970 Pnma BaLaCuS ₃ 11.0438(2)	NdCuS ₃ 1170 <i>Pnma</i> Ba ₂ MnS ₃ 8.0650(1)	EuSn 970 <i>Pnma</i> Eu ₂ CuS ₃ 10.4202(2)	nCuS ₃ 1170 <i>Pnma</i> Eu ₂ CuS ₂ 10.4177(3			
Соединение Т _{отжига} , К Пр. группа Структурный тип <i>а</i> , Å <i>b</i> , Å	EuN 970 Pnma BaLaCuS ₃ 11.0438(2) 4.0660(1)	NdCuS ₃ 1170 <i>Pnma</i> Ba ₂ MnS ₃ 8.0650(1) 4.02077(8)	EuSn 970 Pnma Eu ₂ CuS ₃ 10.4202(2) 3.9701(1)	nCuS ₃ 1170 <i>Pnma</i> Eu ₂ CuS ₂ 10.4177(3 3.9688(1)			
Соединение Т _{отжига} , К Пр. группа Структурный тип <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	Euñ 970 Pnma BaLaCuS ₃ 11.0438(2) 4.0660(1) 11.4149(4)	NdCuS ₃ 1170 Pnma Ba ₂ MnS ₃ 8.0650(1) 4.02077(8) 15.7932(2)	EuSn 970 Pnma Eu2CuS3 10.4202(2) 3.9701(1) 12.8022(2)	nCuS ₃ 1170 <i>Pnma</i> Eu ₂ CuS ₂ 10.4177(3 3.9688(1) 12.8074(3			
Соединение Т _{отжига} , К Пр. группа Структурный тип <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å V, Å ³	EuN 970 Pnma BaLaCuS ₃ 11.0438(2) 4.0660(1) 11.4149(4) 512.58(2)	NdCuS ₃ 1170 <i>Pnma</i> Ba ₂ MnS ₃ 8.0650(1) 4.02077(8) 15.7932(2) 512.13(2)	EuSn 970 Pnma Eu ₂ CuS ₃ 10.4202(2) 3.9701(1) 12.8022(2) 529.62(2)	nCuS ₃ 1170 Pnma Eu ₂ CuS ₂ 10.4177(3 3.9688(1) 12.8074(3 529.52(2)			

Кристаллические структуры исследованных соединений однотипны по строению и симметрии, но различаются по системе связей и координации Ln(III).

Рисунок 2. Перспективные проекции [010] структур соединений EuLnCuS₃ (Ln = La-Nd, Sm) CT Ba₂MnS₃ (A), BaLaCuS₃ (Б) и Eu₂CuS₃ (B), построенные в программе Diamond 3

При отжиге 1170 К в ряду изоструктурных соединений α -EuLnCuS₃ уменьшение параметров и объема э.я. коррелирует с изменением ионного радиуса Ln³⁺ (рис. 3). Наблюдается скачкообразное увеличение объема э.я., рентгеновской плотности при переходе от Nd к Sm, что подтверждает тетрадный эффект, смену структурного типа от Ba₂MnS₃ к Eu₂CuS₃. При 970 К, 770 К появление соединения β -EuLnCuS₃, отражается отклонением от прямолинейной зависимости на участке Ce-Pr.

Рисунок 3. Изменение объема э.я. от ионного радиуса РЗЭ для соединений EuLnCuS₃ (Ln = La-Nd, Sm, Gd) при 1170 К (A), при 970 К и 770 К (Б). Обозначения: круг – CT Ba₂MnS₃, квадрат – CT Eu₂CuS₃, треугольник – CT BaLaCuS₃

Для соединений EuLnCuS₃ с уменьшением ионного радиуса Ln^{3+} наблюдается закономерное изменение длин связей. Среднее расстояние Cu-S уменьшается на участке La-Nd и возрастает на участке Nd-Sm. Среднее расстояние Ln(III)-S (отжиг 1170 K) уменьшается медленно на участке La-Nd и

резко на участке Nd-Sm. Изменяется координационное число атомов P3Э с KЧ = 7 (La-Nd) на KЧ = 6 (Sm), что приводит к смене типа кристаллов и, следовательно, к смене структурного типа с Ba_2MnS_3 на Eu_2CuS_3 (морфотропизм). Среднее расстояние Eu-S (отжиг 1170 K) уменьшается на участке La-Nd и увеличивается на участке Nd-Sm, последнее указывает на последующую трансформацию геометрии локального окружения атома европия, смену структурного типа и пространственной группы.

При 970 К медленное изменение среднего расстояния Ln–S наблюдается на участках La-Ce, Pr-Nd, более существенное на участке Ce-Pr и скачкообразное на участке Nd-Sm. Параметры э.я. уменьшаются на участках La-Ce, Pr-Nd, а на участке Nd-Sm уменьшаются параметры э.я. a и b, a c - увеличивается. С уменьшением ионного радиуса Ln³⁺ средние расстояния Ln–S (Ln = Eu(2), Eu) уменьшаются на участках La-Ce, Pr-Nd и увеличиваются на участках Ce-Pr и Nd-Sm.

Закономерности изменения температур, теплот плавления соединений EuLnCuS₃ (Ln = La-Nd, Sm, Gd). Для соединений EuLnCuS₃ (Ln = La-Nd) CT Ba₂MnS₃ наблюдается понижение температур и теплот инконгрузнтного плавления (рис. 4), что свидетельствует об уменьшении термодинамической стабильности сложных сульфидов. Для соединений EuLnCuS₃ (Ln = Sm, Gd) CT Eu_2CuS_3 увеличение температур инконгруэнтного плавления. Это коррелирует c изменением структуры ряду Nd-Sm. Зависимости В подтверждают проявление тетрадного эффекта.

Рисунок 4. Зависимость температур (А) и теплот (Б) инконгруэнтного плавления соединений EuLnCuS₃ (Ln=La-Nd, Sm, Gd) в ряду РЗЭ

При ДСК гомогенного образца состава EuGdCuS₃ до 1570 К зафиксированы три тепловых эффекта (рис. 5): 1460 К, $\Delta H = 5.5 \ \text{Дж/г}$; 1492 К, $\Delta H = 4.8 \ \text{Дж/г}; 1525 \ \text{K}, \ \Delta H = 9.3 \ \text{Дж/г}.$ Форма пиков свидетельствует о том, что зафиксированным процессам на фазовой диаграмме соответствуют нонвариантные превращения. Характер воспроизведения пиков при повторных нагревах, нахождение образца в твердом состоянии, проявление тепловых эффектов как при нагревании, так и при охлаждении, позволяет заключить о наличии полиморфных переходов EuGdCuS₃. y соединения модификации Высокотемпературные при охлаждении закалке И не

фиксируются. При нагревании образца до 1850 К на термограмме появляется пик при 1720 К, $\Delta H = 8$ Дж/г, соответствующий инконгруэнтному плавлению соединения EuGdCuS₃.

Рисунок 5. Дифференциальные термические зависимости проб образцов сложных сульфидов EuNdCuS₃ и EuGdCuS₃

Микротвердость соединений EuLnCuS₃ составляет: 2050 МПа EuLaCuS₃; 2400 МПа EuCeCuS₃; 2850 МПа EuPrCuS₃; 2320 МПа EuNdCuS₃; 2380 МПа EuSmCuS₃; 2000 МПа EuGdCuS₃ (P = 0.02 кг). В явном виде не прослеживается влияние иона РЗЭ на значения микротвердости.

Разработан способ получения соединения $EuLaCuS_3$ в порошкообразном состоянии. Смесь простых и сложных оксидов, полученная термическим разложением при 1000 К совместно закристаллизованных нитратов меди, европия и лантаноида сульфидируется в потоке H_2S и CS_2 при 970 К в течение 15 часов, при 1120 К в течение 7 часов, при 1220 К в течение 3 часов.

В четвертой главе описываются фазовые равновесия в системах Cu_2S -EuS, EuS-Ln₂S₃, EuS-Ln₂S₃-Cu₂S (Ln = La, Nd, Gd).

Фазовая диаграмма системы Cu₂S–EuS. В системе Cu₂S–EuS имеются твердые растворы (TP) на основе Cu₂S и EuS, между которыми образуется эвтектика: 1069 К, 24.5 мол. % EuS (рис. 6А). Область TP на основе EuS, имеет температурную зависимость. Сведения о солидусе и сольвусе представлены на диаграмме. В α -Cu₂S при 379 К растворяется 6.5 мол. % EuS. TP на основе β -Cu₂S открытого типа и во всем температурном интервале от температуры перитектоида 379 К до температуры эвтектики 1069 К находится в равновесии с TP EuS. Имеется температурная зависимость растворимости в твердом состоянии. Микротвердость кристаллов α -Cu₂S и β -Cu₂S в области TP уменьшается (рис. 6Б). По данным ДСК, построения треугольника Таммана TP β -Cu₂S закрытого типа, по данным ДСК при 1186 К в γ -Cu₂S растворяется 3.5 мол. % EuS.

Рисунок 6. А. Фазовая диаграмма системы Cu₂S–EuS: о – данные ДСК, \emptyset – составы образцов, для которых отсутствовали методы определения их фазового состава в условиях отжига, × - данные ВПТА. Состояние образцов по результатам методов РФА и MCA: \Box – однофазный, Δ – двухфазный; Б. Зависимость состав-микротвердость для образцов системы Cu₂S–EuS (P = 0.02 кг): 1 – TP α -Cu₂S (отжиг 350 K); 2 – TP β -Cu₂S (отжиг 970 K); 3 – TP EuS

Фазовые диаграммы систем Ln_2S_3 -EuS (Ln = La, Nd, Gd) имеют область

непрерывного ТР $\gamma - \left[(Ln_{III})_{\frac{8-2x}{3}} (A_{II})_x \Box_{\frac{1-x}{3}} \right] S_4, 0 < x < 1$ между соединениями γ - Ln_2S_3 -Eu Ln_2S_4 CT Th $_3P_4$, в которой с увеличением концентрации Eu $^{2+}$ возрастают параметр э.я., микротвердость, температуры солидуса и ликвидуса. температур конгруэнтного плавления соединений Понижение $EuLn_2S_4$ коррелирует с уменьшением ионной составляющей химической связи в виду уменьшения величины ионного радиуса rLn³⁺ и увеличением ЭО РЗЭ. Уменьшение параметров э.я., увеличение микротвердости в ряду $EuLn_2S_4$ (Ln = La, Nd, Gd) коррелирует с соотношением ионных радиусов. Характеристики соединений: EuLa₂S₄ a = 8.759 Å, T_{пл} = 2420 К (рассчитана из ур-ния Ефимова-Воздвиженского), H = 5030 МПа; EuNd₂S₄ a = 8.615 Å, T_{пл} = 2380 K, H = 5520 МПа; EuGd₂S₄ a = 8.507 Å, T_{пл} = 2300 K, H = 5840 МПа. Область ТР на основе EuS (CT NaCl) описывается формулой $[(A_{II})_{1-1.5x}(Ln_{III})_x \Box_{0.5x}]S$, где \Box – катионная, структурная вакансия, растворимость на основе EuS в ряду La-Gd закономерно уменьшается (рис. 7), что согласуется с увеличением различия в ионных радиусах $r(Eu^{2+})$ и $r(La^{3+}) = 1.032$ Å (разница 12 %), $r(Nd^{3+}) = 0.983$ Å (16 %), $r(Gd^{3+}) = 0.938$ Å (20 %). В системах закономерно понижается температура плавления эвтектик и смещается состав к соединению EuLn₂S₄. В программе Edstate T спрогнозированы фазовые диаграммы систем Ln_2S_3 -EuS (Ln = Ce, Pr, Sm). Образцы 30.0 и 50.0 мол. % EuS имеют CT Th₃P₄.

Рисунок 7. Фазовые диаграммы систем Ln_2S_3 -EuS (Ln = La, Nd, Gd). Обозначение на рис. 6, \times - данные ВПТА начало плавления

Фазовые равновесия в системах EuS–Cu₂S–Ln₂S₃ (Ln = La, Nd, Gd) качественно подобны (рис. 8), изучены по изотермическому сечению при 970 К и по политермическим разрезам LnCuS₂–EuS, Cu₂S–EuLnCuS₃. В системах EuS– Ln₂S₃–Cu₂S (Ln = La, Nd, Gd) образуется сложный сульфид EuLnCuS₃ (1Cu₂S: 1Ln₂S₃: 2EuS). В ряду РЗЭ меняется характер триангуляции систем. Общим для обоих типов триангуляции является то, что сложный сульфид EuLnCuS₃ находится в равновесии с сульфидами Cu₂S, EuS, LnCuS₂, EuLn₂S₄. В равновесии находится так же фаза LnCuS₂ и TP γ -Ln₂S₃–EuLn₂S₄ CT Th₃P₄. В системах EuS–Cu₂S–Ln₂S₃ (Ln = La, Nd) выделено 5 основных подчиненных треугольников, в которых в равновесии находятся только простые и сложные сульфиды, образующие данный треугольник. В системе EuS–Cu₂S–Gd₂S₃ дополнительно в равновесии находятся соединение EuLnCuS₃ с составами из области TP C₀, что позволило определить положение конод при 970 К. Выделено 7 основных подчиненных треугольников.

Рисунок 8. Положение конод в системе EuS– Ln_2S_3 – Cu_2S (Ln = La, Gd) при 970 К. Точками обозначены изученные образцы, римскими цифрами - основные подчиненные треугольники. Линии внутри треугольников - коноды

Фазовые диаграммы систем LnCuS₂–EuS (Ln = La, Nd). Системы LnCuS₂–EuS характеризуются образованием сложного сульфида EuLnCuS₃, эвтектикой между фазами LnCuS₂ и EuLnCuS₃, TP на основе EuS (рис. 9). Усредненные значения температур инкогруэнтного плавления соединений EuLnCuS₃ установленные по данным ДСК проб образцов из области составов EuLnCuS₃–EuS, соответствуют усредненным температурам параллельных измерений инконгруэнтного плавления соединений EuLnCuS₃. Областей гомогенности на основе соединений LnCuS₂ и EuLnCuS₃ в пределах 1.0 мол. % не обнаружено. Область TP на основе EuS, имеет температурную зависимость.

Рисунок 9. Фазовые диаграммы систем $LnCuS_2$ -EuS (Ln = La, Nd). Условные обозначения на рис. 6

Рисунок 10. Фазовые диаграммы систем Cu_2S -EuLnCuS₂ (Ln = La, Nd). Условные обозначения на рис. 6

Между соединениями $LnCuS_2$ (H = 2950 МПа $LaCuS_2$; H = 3350 МПа $NdCuS_2$) и Eu $LnCuS_3$ образуется эвтектика. По данным ДСК координаты точек

соприкосновения полей кристаллизации фаз Ln_2S_3+ ж и $Ln_2S_3+LnCuS_2+$ ж на линии ликвидус составляют 7.5 мол. % EuS, T = 1471 К (LaCuS_2-EuS); 20.0 мол. % EuS, T = 1422 К (NdCuS_2-EuS). Координаты точки пересечения ветви линии ликвидус с горизонталью инконгруэнтного плавления фазы EuLnCuS_3 составляют: 39.0 мол. % EuS, T = 1539 К (для системы LaCuS_2-EuS); 41.5 мол. % EuS, T = 1470 К (NdCuS_2-EuS). Ветвь линии ликвидус построена с учетом данных по температуре плавления EuS, ДСК и ВПТА.

Фазовые диаграммы систем Cu₂S–EuLnCuS₃ (Ln = La, Nd) с образованием открытой области TP на основе β -Cu₂S, α -Cu₂S и закрытой на основе γ -Cu₂S, эвтектики между TP на основе β -Cu₂S и EuLnCuS₃ (рис. 10).

Поля первичной кристаллизации фаз в системах EuS–Ln₂S₃–Cu₂S (Ln = La, Nd). В системе EuS–Ln₂S₃–Cu₂S определено положение полей первичной кристаллизации фаз: γ -Cu₂S, β -Cu₂S, EuS, EuLnCuS₃, γ -LnCuS₂(EuLn₂S₄), LnCuS₂ (рис. 11). Установлена последовательность изменения составов эвтектик во внутренней части треугольника. Построены изотермы поверхности ликвидуса (рис. 12). Ориентировочно установлены координаты тройных эвтектик. Составлены уравнения нонвариантных фазовых превращений в системах EuS–Ln₂S₃–Cu₂S (Ln = La, Nd) (табл. 3). Определены составы и температуры получения кристаллов EuNdCuS₃ из расплава.

Таблица 3

Рисунок 11. Поля первичной кристаллизации фаз в системах EuS–Ln₂S₃–Cu₂S (Ln = La, Nd). Указаны области и фазовые составы первичных кристаллов, положение конод

Система изотерм объективно отражает изменение поверхности ликвидуса в тройной системе, позволяет подобрать методы, условия проведения экспериментов для уточнения температур ликвидуса для заданного состава.

Рисунок 12. Проекция поверхности ликвидуса систем EuS–Ln₂S₃–Cu₂S (Ln = La, Nd). На рисунке представлено: положение изотерм поверхности ликвидуса с шагом 50-100 градусов, линии изменения составов эвтектик в тройной системе ($e_1 e_7$; $e_6 e_7$; $e_6 e_2$; $e_3 e_4 e_5 e_7$), положение конод

Термохимические характеристики фазовых превращений в системах Cu_2S -EuS, $LnCuS_2$ -EuS, Cu_2S -EuLnCuS_3 (Ln = La, Nd), Cu_2S -Ln₂S₃ (Ln = La-Gd). Построенные фазовые диаграммы систем позволяют составить балансные уравнения фазовых превращений (табл. 4). Для соединений $LnCuS_2$ (CT $CuLaS_2$) установлено понижение температур и теплот инконгруэнтного плавления. Для соединения GdCuS₂ зафиксирована теплота перехода из низковыскотемпературную модификацию при 1352 К, 23 Дж/г.

Таблица 4

Nd, Sm, Gd), Cu_2S -Ln ₂ S ₃ -EuS (Ln = La, Nd, Gd)									
Вид фазового	Нонвариантные	е точки	Уравнения фазовых превращений						
превращения	Состав	Т, К							
Система Cu ₂ S-EuS									
Перитектоидное	6.5 мол. %	379	0.95 TP β -Cu ₂ S (0.015 EuS; 0.985 Cu ₂ S) + 0.05	26					
фазовое превращение	EuS		TP EuS (0.985 EuS; 0.015 Cu ₂ S) \leftrightarrow TP α -Cu ₂ S						
в TP на основе Cu ₂ S			(0.065 EuS; 0.935 Cu ₂ S)						
Плавление эвтектики	24.5 мол. %	1069	0.89 TP β-Cu ₂ S (0.155 EuS; 0.845 Cu ₂ S) + 0.11	38					
	EuS		TP EuS (0.945 EuS; 0.055 Cu ₂ S) \leftrightarrow Ж (0.245						
			EuS; 0.755 Cu ₂ S)						
Инконгруэнтный	7.0 мол. %	1186	TP β -Cu ₂ S (0.07 EuS; 0.93 Cu ₂ S) \leftrightarrow 0.72 TP γ -	12					
распад ТР на основе β -	EuS		Cu_2S (0.035 EuS; 0.965 Cu_2S) + 0.28 $\%$ (0.16						
Cu ₂ S			EuS; 0.84 Cu ₂ S)						
	Системы	Cu ₂ S–L	n_2S_3 (Ln = La-Nd, Sm, Gd)						
Инконгруэнтное	50 мол. %	1471	LaCuS _{2 тв} (0.50 La ₂ S ₃ ; 0.50 Cu ₂ S) ↔ 0.84 Ж	93					
плавление соединения	La_2S_3		$(0.41 \text{ La}_2\text{S}_3; 0.59 \text{ Cu}_2\text{S}) + 0.16 \text{ TP }\beta\text{-La}_2\text{S}_3 (0.967)$						
$LaCuS_2$			La_2S_3 ; 0.033 Cu_2S)						
Инконгруэнтное	50 мол. %	1465	CeCuS _{2 TB} (0.50 Ce ₂ S ₃ ; 0.50 Cu ₂ S) ↔ 0.84 $\%$	46					
плавление соединения	Ce_2S_3		$(0.413 \text{ Ce}_2\text{S}_3; 0.587 \text{ Cu}_2\text{S}) + 0.16 \text{ TP } \gamma \text{-} \text{Ce}_2\text{S}_3$						
CeCuS ₂			$(0.95 \text{ Ce}_2\text{S}_3; 0.05 \text{ Cu}_2\text{S})$						
Инконгруэнтное	50 мол. %	1455	PrCuS _{2 тв} (0.50 Pr ₂ S ₃ ; 0.50 Cu ₂ S) ↔ 0.80 $\%$	52					
плавление соединения	Pr_2S_3		$(0.40 \text{ Pr}_2\text{S}_3; 0.60 \text{ Cu}_2\text{S}) + 0.20 \text{ TP }\gamma\text{-}\text{Pr}_2\text{S}_3 (0.90 \text{ Cu}_2\text{S})$						
PrCuS ₂			Pr_2S_3 ; 0.10 Cu ₂ S)						

Балансные уравнения фазовых превращений в системах Cu₂S–EuS, Cu₂S–Ln₂S₃ (Ln = La-Nd, Sm, Gd), Cu₂S–Ln₂S₃–EuS (Ln = La, Nd, Gd)

			Окончание табл	ицы 4
Инконгруэнтное	50 мол. %	1429	NdCuS _{2 тв} (0.50 Nd ₂ S ₃ ; 0.50 Cu ₂ S) ↔ 0.80 Ж	51
плавление соединения	Nd_2S_3		$(0.40 \text{ Nd}_2\text{S}_3; 0.60 \text{ Cu}_2\text{S}) + 0.20 \text{ TP } \gamma \text{-Nd}_2\text{S}_3 (0.90 \text{ Cu}_2\text{S})$	
NdCuS ₂			Nd ₂ S ₃ ; 0.10 Cu ₂ S)	
Инконгруэнтное	50 мол. %	1432	$SmCuS_{2 TB} (0.50 Sm_2S_3; 0.50 Cu_2S) \leftrightarrow 0.84 $	35
плавление соединения	Sm_2S_3		$(0.43 \text{ Sm}_2\text{S}_3; 0.57 \text{ Cu}_2\text{S}) + 0.16 \text{ TP }\gamma\text{-}\text{Sm}_2\text{S}_3$	
$SmCuS_2$	-		$(0.88 \text{ Sm}_2\text{S}_3; 0.12 \text{ Cu}_2\text{S})$	
Полиморфный переход	50 мол. %	1352	α -GdCuS ₂ $\leftrightarrow\beta$ -GdCuS ₂	23
α -GdCuS ₂ $\leftrightarrow \beta$ -GdCuS ₂	Gd_2S_3			
Инконгруэнтное	50 мол. %	1470	-	26
плавление соединения	Gd_2S_3			
$GdCuS_2$				
	Системы (Cu ₂ S–Lr	n_2S_3 -EuS (Ln = La, Nd, Gd)	
Инконгруэнтное	1NdCuS ₂ :1EuS	1470	EuNdCuS _{3 TB} (0.50 EuS; 0.50 NdCuS ₂) \leftrightarrow 0.18	39
плавление соединения			TP EuS (0.885 EuS; 0.115 NdCuS ₂)+ 0.82 Ж	
EuNdCuS ₃			(0.415 EuS; 0.585 NdCuS ₂)	
Система NdCuS ₂ -EuS	32.0 мол. %	1318	0.36 NdCuS _{2 тв} + 0.64 EuNdCuS ₃ (0.50 EuS; 0.50	22
плавление эвтектики	EuS		$NdCuS_2$) $\leftrightarrow \mathcal{K}$ (0.32 EuS; 0.68 $NdCuS_2$)	
Инконгруэнтное	1LaCuS ₂ :1EuS	1539	EuLaCuS _{3 TB} (0.50 EuS; 0.50 LaCuS ₂) \leftrightarrow 0.22 TP	52
плавление соединения			EuS (0.89 EuS; 0.11 LaCuS ₂) + 0.78 Ж (0.39	
EuLaCuS ₃			$EuS; 0.61 LaCuS_2)$	
Система LaCuS ₂ -EuS	26.0 мол. %	1373	0.48 LaCuS _{2 тв} + 0.52 EuLaCuS ₃ (0.50 EuS; 0.50	24
плавление эвтектики	EuS		$LaCuS_2$) $\leftrightarrow \mathbb{K}$ (0.26 EuS; 0.74 $LaCuS_2$)	
Система Си ₂ S-	20.5 мол. %	1142	0.87 TP β-Cu ₂ S (0.085 EuNdCuS ₃ ; 0.915 Cu ₂ S) +	12
EuNdCuS ₃ плавление	EuNdCuS ₃		0.13 EuNdCuS _{3 тв} ↔ Ж (0.205 EuNdCuS ₃ ; 0.795	
эвтектики			$Cu_2S)$	
Система Си ₂ S-	2.5 мол. %	1278	TP β-Cu ₂ S (0.025 EuNdCuS ₃ ; 0.975 Cu ₂ S) ↔	-
EuNdCuS ₃	EuNdCuS ₃		0.83 TP γ-Cu ₂ S (0.015 EuNdCuS ₃ ; 0.985 Cu ₂ S) +	
инконгруэнтный			0.17 Ж (0.075 EuNdCuS ₃ ; 0.925 Cu ₂ S)	
распад ТР на основе β -				
Cu ₂ S				
Система Си ₂ S-	4.0 мол. %	1203	TP β -Cu ₂ S (0.04 EuLaCuS ₃ ; 0.96 Cu ₂ S) \leftrightarrow 0.71	7
EuLaCuS ₃	EuLaCuS ₃		TP γ -Cu ₂ S (0.015 EuLaCuS ₃ ; 0.985 Cu ₂ S) + 0.29	
инконгруэнтный			Ж (0.10 EuLaCuS ₃ ; 0.90 Cu ₂ S)	
распад ТР на основе β -				
Cu ₂ S				
Система Си ₂ S-	14.7 мол. %	1122	0.91 TP β-Cu ₂ S (0.065 EuLaCuS ₃ ; 0.935 Cu ₂ S) +	38
EuLaCuS ₃ плавление	EuLaCuS ₃		0.09 EuLaCuS _{3 тв} ↔ Ж (0.147 EuLaCuS ₃ ; 0.853	
эвтектики	-		Cu ₂ S)	
Инконгруэнтное	50.0 мол. %	1720	EuGdCuS ₃ тв (0.50 EuS; 0.50 GdCuS ₂) ↔ 0.07	8
плавление соединения	EuS		TP EuS (0.91 EuS; 0.08 GdCuS ₂) + 0.93 Ж (0.47	
EuGdCuS ₃			EuS; 0.53 GdCuS ₂)	

Выводы

1. В ряду впервые полученных соединений EuLnCuS₃ (Ln = La-Nd, Sm) выявлены три типа кристаллических структур ромбической сингонии с симметрией *Pnma*. Соединения EuLaCuS₃ и EuCeCuS₃ не образуют полиморфных модификаций и принадлежат к CT Ba₂MnS₃. Соединения, EuPrCuS₃, EuNdCuS₃ имеют две модификаций: низкотемпературную CT BaLaCuS₃ и высокотемпературную CT Ba₂MnS₃. Соединение EuSmCuS₃ изоструктурно Eu₂CuS₃. В ряду изоструктурных соединений уменьшение параметров, объема э.я. коррелирует с изменением ионного радиуса Ln³⁺.

Скачкообразное увеличение объема э.я., плотности, уменьшение координационного числа (Ln^{3+}) наблюдается при переходе от Nd к Sm, что подтверждает тетрадный эффект, смену CT. Разработан способ получения порошка сложного сульфида EuLaCuS₃ из шихты, содержащей микро- и наноразмерные частицы.

2. Тип фазовой диаграммы системы Cu_2S -EuS проявляется и в разрезах Cu_2S -EuLnCuS₃ (Ln = La, Nd). Впервые построены фазовые диаграммы систем, которые эвтектического типа с образованием открытой области TP на основе β -Cu₂S, α -Cu₂S и закрытой на основе γ -Cu₂S. Системы LnCuS₂-EuS с образованием инкогруэнтно плавящегося соединения EuLnCuS₃ и областью TP на основе EuS. В системах EuS-Ln₂S₃ (Ln = La, Nd, Gd) имеется TP γ -Ln₂S₃-EuLn₂S₄ (CT Th₃P₄), TP на основе EuS и эвтектика между фазами EuLn₂S₄ и EuS. В ряду P3Э La-Nd-Gd закономерно понижаются параметры э.я. соединений EuLn₂S₄, температуры плавления эвтектик (2280 K→2100 K), растворимость на основе EuS; увеличивается микротвердость; состав эвтектики смещается к соединению EuLn₂S₄.

3. В ряду РЗЭ наблюдается понижение термической устойчивости и теплот фазовых превращений соединений: EuLnCuS₃ CT Ba₂MnS₃ (1539 K \rightarrow 1470 K; 52 Дж/г \rightarrow 39 Дж/г); LnCuS₂ CT CuLaS₂ (1471 K \rightarrow 1432 K; 93 Дж/г \rightarrow 23 Дж/г); EuLn₂S₄ CT Th₃P₄ (2420 K \rightarrow 2300 K). Изменение у соединений EuLnCuS₃ типа структуры на Eu₂CuS₃ привело к увеличению их термической стабильности (температуры плавления 1583К \rightarrow 1720 K).

4. Составлены балансные уравнения фазовых превращений в системах Cu₂S-EuS, Cu₂S-Ln₂S₃, EuS-Ln₂S₃-Cu₂S. Теплоты и температуры эвтектик составляют: Cu₂S-EuS 38 Дж/г, 1069 К; Cu₂S-EuLnCuS₃ (Ln = La, Nd) 38-12 Дж/г, 1122-1142 К; LnCuS₂-EuS (Ln = La, Nd) 24-22 Дж/г, 1373-1318 К. Теплоты и температуры инконгруэнтного распада ТР на основе β -Cu₂S составляют: Cu₂S-EuS 12 Дж/г, 1186 К; Cu₂S-EuLaCuS₃ 7 Дж/г, 1203 К.

5. В ряду РЗЭ La-Nd-Gd меняется характер триангуляции систем EuS– Ln₂S₃–Cu₂S при 970 К. Общим является то, что в равновесии находятся соединение EuLnCuS₃ с сульфидами Cu₂S, EuS, LnCuS₂, EuLn₂S₄; соединение LnCuS₂ и TP γ -Ln₂S₃–EuLn₂S₄. В системе EuS–Gd₂S₃–Cu₂S соединение EuGdCuS₃ так же находится в равновесии с TP фазы C₀ бертоллидного типа. Установлено подобие поверхности ликвидуса и полей первичной кристаллизации фаз γ -Cu₂S, β -Cu₂S, EuS, Ln₂S₃(EuLn₂S₄), LnCuS₂, EuLnCuS₃ в системах EuS–Ln₂S₃–Cu₂S (Ln = La, Nd).

Основные публикации по теме диссертации:

статьи в изданиях, рекомендованных ВАК РФ

- 1. Андреев О.В. Фазовые диаграммы разрезов системы Cu₂S-EuS-Nd₂S₃ / О.В. Андреев, А.В. Русейкина, Л.А. Соловьев // Журн. неорг. химии. 2011. Т. 56. № 5. С. 843-848.
- 2. Андреев О.В. Теплоты плавления соединений LnCuS₂ / О.В. Андреев, А.В. Русейкина // Вестник Тюменского государственного университета. 2011. № 5. С.186-189.
- 3. Андреев О.В. Ликвидус системы Cu₂S–EuS–Nd₂S₃ / О.В. Андреев, А.В. Русейкина // Вестник Омского государственного университета. 2010. № 4. С. 95-100.

4. Андреев О.В. Синтез соединений EuLnCuS₃ (Ln = La-Nd), температуры и теплоты их плавления / О.В. Андреев, А.В. Русейкина // Вестник Тюменского государственного университета. – 2010. – № 3. – С. 221-227.

статьи, учебные пособия, тезисы докладов

- 5. Андреев О.В. Использование треугольника Таммана, микроструктуры для определения нонвариантных точек в системе Cu₂S–EuLaCuS₃ / О.В. Андреев, А.В. Русейкина, В.П. Харитонова // Вестник Тюменского государственного университета. 2009. № 6. С. 257-262.
- 6. Русейкина А.В. Дифференциальный термический анализ и калориметрия: Лабораторный практикум / А.В. Русейкина, О.В. Андреев. Тюмень: ТюмГУ, 2008. 128 с.
- 7. Русейкина А.В. Эволюция мезо- и нанозерен в процессе получения новых магнитных материалов EuLnCuS₃ (Ln = La-Sm) [Электронный ресурс] / А.В. Русейкина, О.В. Андреев // Международный конкурс работ молодых ученых в области нанотехнологий. Ш Международный форум по нанотехнологиям, Москва, 1-3 ноября 2010: тез. докл. Систем. требования: Adobe Acrobat Reader. URL: http://www.rusnanoforum.ru/Document.aspx/Download/30526 (дата обращения: 25.03.2011).
- Русейкина А.В. Фазовые состояния в системах EuS–Ln₂S₃ (Ln = La-Dy) / А.В. Русейкина, О.В. Андреев // Физико-химический анализ природных и технических систем: сб. ст. – Тюмень: ТюмГУ, 2008. – С. 132-140.
- Rusejkina A.V. Experimental research of thermodynamic characteristics of phases in Cu₂S–EuS system / A.V. Rusejkina, O.V. Andreev, N.A. Khritokhin // Abstracts of the XVII International Conference on Chemical Thermodynamics in Russia. Kazan, 29 June 3 July 2009. Kazan: IPH «Butlerov Heritage» Ltd, 2009. V. 2. P. 306.
- 10. Русейкина А.В. Мезо- и наносостояния соединения EuNdCuS₃ / А.В. Русейкина, О.В. Андреев, Л.А. Соловьев // Тез. докл. Х Юбилейной Междун. науч. конф. «Химия твердого тела: наноматериалы, нанотехнологии» г. Ставрополь, 17-22 октября 2010. Ставрополь: СевКавГТУ, 2010. С. 384-386.
- 11. Русейкина А.В. Структура соединения EuSmCuS₃ / А.В. Русейкина, Л.А. Соловьев, О.В. Андреев // Тез. докл. Всерос. науч. конф. «Актуальные проблемы химии. Теория и практика» г. Уфа, 21-23 октября 2010. Уфа: РИЦ БашГУ, 2010. С. 89.
- 12. Русейкина А.В. Структура соединения EuPrCuS₃ / А.В. Русейкина, Л.А. Соловьев // Тез. докл. II Междунар. конф. РХО им. Д.И. Менделеева «Инновационные химические технологии и биотехнологии новых материалов и продуктов» г. Москва, 28-29 сентября 2010. М.: РХТУ им. Д.И. Менделеева, 2010. С. 161-162.
- 13. Русейкина А.В. Фазовые равновесия в системе CuLaS₂–EuS / А.В. Русейкина, О.В. Андреев // Тез. докл. IX Междунар. Курнаковского совещания по физико-химическому анализу г. Пермь, 5 9 июля 2010. Пермь: Пермский государственный университет, 2010. С. 237.
- 14. Русейкина А.В. Эволюция зерен при синтезе порошка EuLaCuS₃ / А.В. Русейкина, О.В. Андреев // Тез. докл. XXIII Рос. конф. по электронной микроскопии г. Черноголовка, 31 мая 4 июня 2010. Черноголовка: «Богородский печатник», 2010. С. 127-128.
- 15. Русейкина А.В. Синтез и структура соединения EuCeCuS₃ / А.В. Русейкина, Р.Н. Вахапова // Тез. докл. ХХ Рос. молодеж. науч. конф. «Проблемы теоретической и экспериментальной химии», посвящ. 90-летию Урал. гос. ун-та им. А.М. Горького г. Екатеринбург, 20-24 апреля 2010. Екатеринбург: Урал. ун-т, 2010. С. 278.
- 16. Русейкина А.В. Фазовые равновесия в системе CuGdS₂-EuS/ А.В. Русейкина, И.В. Аксенова, О.А. Новикова // Тез. докл. XXI Рос. молодеж. науч. конф. «Проблемы теоретической и экспериментальной химии», посвящ. 150-летию со дня рожд. академика Н.Д. Зелинского г. Екатеринбург, 19-23 апреля 2011. Екатеринбург: Урал. ун-т, 2011. С. 261-262.