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Abstract 

In this paper the results of the numerical modeling of two-phase gas and liquid flows are given in horizontal 
channels for the purpose of definition of occurring flow structures and their existence conditions. The 
calculations were performed for two-dimensional models. The regimes occurring at the velocity range from 0.1 
m/s to 15 m/s and various phase relation were under investigation. The phase boundaries location in the flow was 
determined with the VOF- volume of fluid method. The discovered flow structures were qualitatively analyzed 
and identified due to the accepted classification. Parameters of the modeling regimes were compared to the 
semi-empirical regime map of Taitel and Dukler, whereby the expected flow type was determined. The area of 
stream structures coincidence was defined in the numerical modeling using the regime map of Taitel and Dukler. 

Keywords: multiphase current, numerical modeling, card of modes of a current, OpenFoam, volume of fluid 
method 

1. Introduction 

When creating various devices processing multiphase mixtures the issue of the investigated stream structure 
comes up. The structure of multiphase stream flow depends on the ratio volumes of phases, overall volumetric 
flax, channel orientation and geometry, flow direction (downflow, upflow, horizontal flow) as well as on the fluid 
and gas properties inside the channel. However the issue of the mentioned properties influence on the steady 
flow type is open. In the overwhelming majority of cases the multiphase streams are observed in round pipes and 
the question of stream section shape influence on the steady flow type is open. To reduce the impact of channel 
geometry we offer to consider a two-dimensional flow limit case. Among the others the flow dimensionality 
factor is of interest. On the one hand, two-dimensional flows are applied practically and investigation of 
two-dimensional structures properties versus three-dimensional is a separate task. On the other hand, detection of 
conditions under which the qualitative uniformity of two- and three-dimensional flow structures is observed 
would provide an opportunity to apply techniques of accelerated estimations of flow parameters practically for 
engineering numerical calculations. The issue of estimation time reduction is of high relevance for design of 
some technical devices. The issue of the mathematical model adequacy is very important as well.  

2. Review of Literature 

2.1 Types of Two-Phase Flows 

By an experimental approach we have established a huge amount of gas-liquid flows structures in channels 
different in phase interface shape (Beggs H. D., Brill J. P., 1973). The regime classification based on its visual 
perception is reasonably subjective. The basic structures for horizontal three-dimensional channels are bubble, 
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plug, emulsive, annular-dispersed and stratified structures (fig. 1). Thereat plug and emulsive structures are 
sometimes combined into intermitted regime. The stratified structure is divided into a properly stratified regime 
with no waves in phase interface and a wave regime (1). Due to experimental researches the additional fluidal 
regimes were also discovered in 2D channels. (Chinnov E.A., Kabanov О.А., 2008, Serizava A., Feng Z.,Kawara 
Z., 2002, Xu J.L. et al.1999, Abiyev R.S., Lavretsov I.V., 2010, Lavretsov I.V., 2009 ). It is clear to see from the 
qualitative description of two-phase stream specific structures the importance of correct definition of these 
structures when calculating the flow resistance and heat exchange. To define the expected flow structure (regime) 
the maps integrating data graphically and visualizing domains of structures existence in terms of stream 
conditions are extensively used. (Mandhane, J. M. et al. 1974, Schicht H.H., 1969, Scott D. S., 1963, Taitel Y., 
Dukler A. E., 1976). The maps are different in selecting variables that define the regime.  

 
Figure 1. Structures of gas-liquid flow in horizontal pipes [1]: а – bubble; b – plug; c – emulsive; d – 

annular-dispersed; e– stratified 

 

However it should be kept in mind that the flow regime boundaries depend both on the operating conditions and 
phase properties, and on channel inlet conditions. Thereat, the evaluation of a two-phase flow structure takes 
place at the long length, exceeding 100 channel diameters in many cases. Transfer from one structure to the other 
is caused by the buckling failure of the original structure. Therefore the two-phase stream regime maps should be 
considered as the tools for the approximate estimation of the flow type. 

So let us consider the regime map of Taitel and Dukler (Taitel Y., Dukler A. E., 1976.) Generalized stream 
parameters are used to determine the flow regime, so that the map can be applied for wide liquids range and 
various pipe sizes. The flow regime map is shown in the figure 2. A boundary between the wavy regime and the 
others is determined with the Froude number F and the Lockhart–Martinelli parameter Х (Beggs H. D., Brill J. P., 
1973.):  

( )
g

g
l g

F w
gD

ρ
ρ ρ

=
−

                (1) 

( ) ( )liquid gas

dp dp
X

dz dz
=               (2) 
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(calculated by gas rate); ( )
dp

liquid
dz

 and ( )
dp

gas
dz

 are the pressure gradients in the channel where either the 

liquid phase or gas phase flows with its actual discharge.  

 
Figure 2. The flow regime map of Taitel and Dukler for horizontal channels (Taitel Y., Dukler A. E., 1976). A and 

B boundaries are determined with the variables X and F, C boundary is determined with the variables X and T 

 

For the boundary of the bubble or intermitted regime upon annular the X parameter is constant and equals 1.6. 
The boundary of the bubble regime upon intermitted is determined by the X parameter and the T number that 
could be considered as the Froude number alternative and determined from the liquid phase velocity: 

( )

( )

liquid

l g

dp

dzT
gρ ρ

=
−

                      (3) 

According to the approximate calculation procedure for conditions of relative transition among the various 
stream structures the stratified flow regime is considered as the basic regime for the flow in horizontal and low 
inclined pipes. For this structure the one-dimensional momentum conversation equations are written separately 
for the liquid and gas streams. When the friction law is prescribed such approach enables to calculate the 
sectional fractions at the interphase boundary for every phase within the observed flow regime as well as the 
pressure gradient in the pipe. Supposing the liquid and gas were flowing in a pipe with their mass rate in absence 
of the other phase, the respective pressure gradients would be expressed by the famous Darcy–Weisbach’s law at 
the cost of friction (Loytsyanskiy L. G., 2003). − = 	               (4) 

where λ is the hydraulic drag coefficient, D is the hydraulic diameter, ρ is the phase density, w is the phase 
velocity. The Lockhart–Martinelli parameter (2) based on the ratio of phase pressure gradients in a pipe shows 
that the two-phase mixture behaves much similar to the liquid, than to the gas.  

The drag coefficients are calculated as the Reynold’s numbers functions  and   using well-known 
formulas from mechanics of single-phase systems. For liquid and gas these numbers are determined with the 
following formulas (Loytsyanskiy L.G., 2003): = 	

  =                     (5) 

where ,  are the dynamic viscosities of gas and liquid properly.   

2.2 Mathematical Model of Two-Phase Flow 

Let us consider two-phase two-dimensional isothermal flow of the viscous liquid and gas. To define the 
multiphase flow structure we should determine the location of the phase boundaries in a stream. We take the 
phases as incompressible. This condition is correct when the pressure gradients in the stream are insignificant. 
The motion of every phase in such a case obeys the Navier-Stokes equation: 
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= − + + +                   (6) 

where  is the phase density, p is the pressure,  is the dynamic phase viscosity,  is the phase motion 
velocity,  is the gravity factor,  is the body force vector. The interphase boundary occurrence imposes some 
additional conditions such as absence of boundary overflow and momentum conversation at the boundary. The 
estimation of free interphase boundary location is a nontrivial task the can be solved with a number of numerical 
procedures. (Ferziger J. H., Peric M. ,2002, Harlow F. H., Welch J. E. ,1965, Scardovelli R., Zaleski S., 1999, 
Osher S.J., Fedkiw R.P., 2003, Strakhovskaya L.G., 2009, Strakhovskaya L.G., 2010, Rukavishnikov А.В., 
2008). We consider the VOF-method based on single-fluid approximation as one of the approached widely 
applied to track out the boundary between gas and liquid. (Hirt C. W., Nicolls B. D.,1981). Herewith the scalar 
function α – phase volume content – is to observe.  

α =	 1, ℎ 	 ℎ 	 	 	 	 ℎ 	 	0, ℎ 	 ℎ 	 	 	 	 	 ℎ 	 	(0; 1), ℎ 	 	 	 ℎ 	 	 	 ℎ 	                  (7) 

The α development is determined by the transfer equation, represented by the conservation law of the phase 
volume ratio: +	 ∙ = 	 	                (8) 

where Ss specifies the phase source (run-off) strength. Within this approach the condition of zero crossflow is 
always fulfilled at the phase boundary. Flow of liquid and gas, interacting through the interphase boundary, is 
substituted for mono-phase flow, described by the density and pressure jump at the boundary. In such a case 
there is one equation (6) for the whole stream to solve. The viscosity and density are determined as the formula = 	 + (1 − ) 	; 	 = 	 + (1 − ) 	                         (9) 

where ,  are the densities of the 1st and 2nd phases, ,  are the dynamic viscosities of the 1st and 2nd 
phases, α is the volume content of the 1st phase. As one of the VOF-method advantages we can select the 
analysis grid constancy and relative calculation simplicity as well.   

3. Numerical Modeling Methods for Two-Phase Flow 

The hydrodynamical simulator OpenFOAM with a plain code was used for modeling of two-phase gas-liquid 
flows (Kurbanaliyev А. Y., Tayirov М. М., 2011, www.thermalfluidscentral.org, www.thermopedia.com). We 
performed all the calculations using the supercomputer. To complete the task we used based on the VOF-method 
Multiphase InterFOAM for incompressible, isothermal, immiscible liquids. 

The system of original differential equations can be transformed into system of the linear algebraic equations 
with the help of the existing numerical circuits (Fletcher C., 1991). The Gaussian linear spatial discretization 
circuit was applied in this paper. The obtained algebraic equation system was solved with the conjugate gradient 
method (Ferziger J. H., & Peric M., 2002). 

All the fluids densities and viscosities were taken as constant and irrespective of the pressure when calculating. 
The gas was taken as the first phase so that α presented the volumetric gas content.  

As it was said, a stable stream structure is formed gradually, for this reason to obtain the correct results the 
calculations should be done for extended sections. Therefore the quantity of calculated cells in a model can reach 
106, and the calculation time comes up to 10-200 hours using the supercomputer. The calculations were made for 
the two-dimensional model of channel, limited with the upper and lower boundaries. The following stream 
properties were used when modeling:   

The channel height is 0.04 m, the hydraulic diameter of the channel corresponds to the pipe diameter 0.08 m 
upon that. The stream velocity range is from 0.1 m/s to 15 m/s. The channel length was chosen according to the 
range velocity within the limits 1-100m to ensure at least 10 second stream flow time in the channel.  The cell 
size in the analysis grid is 1,8mm. The cells are square-shaped. The gas content range is from 0.1 to 0.9 in 
increments of 0.2. Physical properties of the phases correspond to oil and air: the liquid density is 820kg/m3, the 
gas density is 12kg/m3, the kinematic liquid viscosity is 4 ∙ 10  m2/s, the kinematic gas viscosity is 1,48 ∙10 	m2/s. At the channel inlet α distribution corresponds to the max homogeneous stream structure. The α value 
in cells takes on 2 possible values: 1 or 0. The α values distribute in cells in a random manner. α distribution 
consistency allows to avoid the influence of initial conditions on the modeling results. Flow homogeneity at the 
channel inlet prevents possible correlations when the flow develops from one structure to another. The stream 
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velocity and zero pressure gradient were assigned at the channel inlet. At the outlet the condition of free channel 
discharge and the constant pressure were assigned for the velocity. 

4. Results 

According to the calculation results flow longitudinal sections for all 35 estimations were constructed, and with 
that the qualitative evaluation of stream regime was made. The patterns of the basic observed flow regimes and 
type evaluation are given in the figures 3-6. The gas is marked with blue and the liquid with red. To minimize the 
influence of the initial and boundary conditions the stream regime was estimated at a distance equal to 10 second 
of mixture lifetime. The channels given in the figures are cut into sections and located one below the other for 
reasons of compactness. Fragments of the fig.1 with the appropriate regime are also shown in the figures below. 

 

 

 

Figure 3. The stratified flow regime (stream velocity u=0.5 m/s, α=0.5) 

a) 

 

 

 

 

 

Figure 4. The intermitted flow regime. а – the flow regime is close to the stratified or plug regime (stream 
velocity u=2 m/s, α=0.3) , b – the flow regime is close to the emulsive (stream velocity u=5 m/s, α=0.3) 

b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The annular flow regime (stream velocity u=10 m/s, α=0.9) 

 

 

 

 

 

 

Figure 6. The bubble flow regime. (stream velocity u=15 m/s, α=0.3) 
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5. Discussion 

As it appears from the figures 3-6, all the structures specific to 3-dimensional 2-phase flows are actualized in 
2-dimensional 2-phase gas-liquid flows. This goes to prove that the force nature and order in 2- and 
3-dimensional flows are fast similar when modeling. Therefore the bubble regime requires a dense grid to make 
the small bubbles visible. The phase distribution pattern presented in the figure 6 is close to the bubble regime, 
but differs in cell sizes (1.8 mm). In case the channel is long (as a result of high stream velocity) crosspartition of 
the cells leads to increase of rated cells number and calculation time. 

The flow regime map constructed for three-dimensional horizontal two-phase flows can be used to evaluate the 
coincidence rate of every regime existence conditions for two- and three- dimensional flows. 

For purpose of comparison of the obtained regimes estimations to the Taitel and Dukler’s map we constructed 
the tables below. The Table 1 represents the F, X, T parameters determined by the formulas (1)-(3) and the Table 
2 shows the comparison of the flow regimes predicted with the map and the actually evaluated. The lines in the 
Table 2 marked with ‘OF’ represent the flow pattern estimation, resulted from the OpenFoam numerical 
modeling. The lines marked with ‘T&D’ represent the estimation based on the Taitel and Dukler’s map. The 
empty cells reveal the complexity of single classification of the obtained stream regime. The values denoted with 
an asterisk evidence that the stream regime is close to the transitional boundary. As it appears from the Table 2 
the predicting three-dimensional flow regime is in accord with the modeling two-dimensional flow regime when 
the stream velocities are within the range 2-5 m/s. The highest regime difference is observed at high gas content 
(α=0.9) within the whole velocities range (Table 2, right column) as well as at some low and high stream 
velocities (u= 0.1-1.5 m/s and u= 10- 15 m/s) (Table 2, opening and finishing lines). 

 

Table 1. Parameters for the modeling flows at different regimes: X is the Lockhart–Martinelli parameter, F is the 
Froude number, T is the Taitel and Dukler’s parameter  

U, m/s 
α

  0,1 0,3 0,5 0,7 0,9

0,1 
X 40,7696 20,7589 13,5899 8,8967 4,5300
F 0,0014 0,0041 0,0069 0,0096 0,0124
T 0,0432 0,0381 0,0322 0,0249 0,0144

0,5 
X 40,7696 20,7589 13,5899 8,8967 4,2363
F 0,0069 0,0206 0,0344 0,0481 0,0619
T 0,0965 0,0851 0,0719 0,0557 0,0322

1 
X 40,7696 20,7589 11,2613 5,8524 2,6748
F 0,0138 0,0413 0,0688 0,0963 0,1238
T 0,1365 0,1203 0,1017 0,0788 0,0455

2 
X 60,4345 18,5640 7,7034 4,4422 2,0584
F 0,0275 0,0825 0,1376 0,1926 0,2476
T 0,2861 0,2124 0,1438 0,1114 0,0643

5 
X 72,2072 19,6453 9,3458 4,1632 1,4598
F 0,0688 0,2063 0,3439 0,4815 0,6190
T 0,6522 0,5234 0,3893 0,2328 0,1017

10 
X 64,0563 19,6458 9,3603 4,4588 1,1257
F 0,1376 0,4127 0,6878 0,9629 1,2381
T 1,1961 0,9600 0,7151 0,4573 0,1438

15 
X 64,0110 19,6458 9,3603 4,4598 1,2777
F 0,2063 0,6190 1,0317 1,4444 1,8571
T 1,7054 1,3688 1,0197 0,6522 0,2328

 

Table 2. The interface of the Taitel and Dukler’s flow regime map and the results of 2-dimensional flows 
modeling 

U, m/s 
α

0,1 0,3 0,5 0,7 0,9

0,1 
T&D: SW* SW* SW* SW* SW*

OF: SW SW SW SW SW

0,5 T&D: I I I I SW*

OF: - SW SW SW SW

1 T&D: I I I I I*

OF: SW SW SW SW SW

2 
T&D: I I I I I*

OF: SW SW SW SW SW
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5 T&D: I I I I I*

OF: I I I SW SW
10 T&D: I I I I AD*

 OF: I I I I SW
15 T&D: DB DB* I I AD*

 OF: DB AD
 

Reference designations for the flow regimes: AD-annular-dispersed; DB- dispersed bubble; I-intermitted; 
SW-stratified wavy. 

It should be taken into account that the flow parameters at the right column of the Table 2 corresponds to 
transition section at the Taitel and Dukler’s map near the lines A and B as it is shown in the figure 8, constructed 
according to the Table 1 data.  

 
Figure 8. Correspondence of the stream flow regimes, when α=0.9 within the velocity range u= 0,1-15 m/s 

according to the Taitel and Dukler’s flow regime map for horizontal channels 

 

The numerical modeling and flow type explanation are complicated in this section. The differences in the other 
cases can be also caused by appropriation of the flow conditions to the transition areas (in the range of А and С 
boundaries, fig.2).  Far from the transition areas we can observe the coincidence of the flow regimes of the 
modeling two-dimensional and real three-dimensional flows. Overall we can conclude that two-dimensional and 
three-dimensional flows are identical in respect of the qualitative characteristics and existence conditions of the 
various structures. This allows us to apply two-dimensional calculations to evaluate some properties of 
two-phase flows in three-dimensional cases. 

6. Conclusion 

Although the modeling results showed that the numerical calculations of two-dimensional two-phase horizontal 
flows inside the channels based on the VOF-method represent almost all observed by the experiment flow types, 
it is reasonable to notice that the area under investigation appeared to be not wide enough. We explain it with the 
computational complexity of the modeling high-velocity flows. The estimations of flows in vertical channels are 
of particular interest. If we research all types of the channel orientation, we could make clear the construction 
mechanism of a particular structure, as well as analyze the influence of stream dimensionality on the flow 
regime. 

The authors are grateful to the staff of the Main Computer Center and the Technology Park of the Tyumen State 
University, who lent their countenance and technical support to this research.  
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