Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elib.utmn.ru/jspui/handle/ru-tsu/15416
Название: Математическое моделирование температурных полей в характерных сечениях рабочей зоны замкнутого двухфазного термосифона
Другие названия: Mathematical simulation of temperature fields in characteristic sections of the working zone of the closed two-phase thermosyphon
Авторы: Kuznetsov, G. V.
Nurpeiis, A. E.
Кузнецов, Г. В.
Нурпейис, А. Е.
Ключевые слова: heat transfer
heat flux
two-phase thermosiphon
mathematical modeling
thermal conductivity
condensation
evaporation
математическое моделирование
теплопроводность
конденсация
испарение
теплоперенос
тепловой поток
двухфазный термосифон
Дата публикации: 2018
Издатель: Издательство Тюменского государственного университета
Библиографическое описание: Кузнецов, Г. В. Математическое моделирование температурных полей в характерных сечениях рабочей зоны замкнутого двухфазного термосифона / Г. В. Кузнецов, А. Е. Нурпейис // Вестник Тюменского государственного университета. Серия: Физико-математическое моделирование. Нефть, газ, энергетика / главный редактор А. Б. Шабаров. – Тюмень : Издательство Тюменского государственного университета, 2018. – Т. 4, № 1. – С. 8-22.
Аннотация (реферат): The authors present the results of numerical studies of the joint thermal conductivity and coolant phase transformations in a cylindrical thermosyphon. The heat transfer problem for two bilayer plates is solved. The evaporation of liquid on the bottom cover and the condensation on the top cover of the thermosyphon is taken into account. The authors have conducted a numerical study of heat transfer in the closed two-phase thermosyphon with energy removal from a heat-emitting surface in fairly typical ranges of variation of heat flows to the bottom cover, corresponding to the operating modes of power equipment (2-8 kW/m2). Distilled water was considered as coolant. The filling ratios and geometric parameters of the thermosyphon are chosen the same as in the experiments conducted (height 161 mm, diameter 42 mm, wall thickness 1.5 mm, filling ratio ε = 4%). The main results of mathematical simulation are presented in the form of temperature fields for various heat flows to the bottom cover of the thermosyphon and the heat transfer coefficient from the surface of the top cover of the heat exchanger under consideration. The results of mathematical simulation, obtained numerically, describe adequately the heat transfer in the thermosyphon and belong to the confident limits of the experimental data on the temperatures at the characteristic points of the heat exchanger.
Приведены результаты численных исследований совместно протекающих процессов теплопроводности и фазовых превращений теплоносителя в термосифоне цилиндрической формы. Решена задача теплопереноса для двух двуслойных пластин. Учитывалось испарение жидкости на нижней крышке и конденсация на верхней крышке термосифона. Численные исследования теплопереноса в закрытом двухфазном термосифоне в условиях отвода энергии от тепловыделяющей поверхности проведены в достаточно типичных диапазонах изменения тепловых потоков к нижней крышке, соответствующих режимам работы энергетического оборудования (от 2 кВт/м2 до 8 кВт/м2). В качестве теплоносителя рассматривалась дистиллированная вода. Коэффициенты заполнения и геометрические параметры термосифона выбирались такими же, как и в проведенных экспериментах (высота – 161 мм, диаметр – 42 мм, толщина стенок – 1,5 мм, коэффициент заполнения ε = 4%). Основные результаты математического моделирования представлены в виде полей температур при различных тепловых потоках к нижней крышке термосифона и коэффициента теплоотдачи с поверхности верхней крышки рассматриваемого теплообменника. Установлено, что результаты математического моделирования, полученные численно, достаточно адекватно описывают процессы теплопереноса, протекающие в термосифоне, и лежат в пределах доверительных интервалов экспериментальных данных по температурам в характерных точках теплообменника.
URI (Унифицированный идентификатор ресурса): https://elib.utmn.ru/jspui/handle/ru-tsu/15416
ISSN: 2500-0888
2411-7927
Источник: Вестник Тюменского государственного университета. Серия: Физико-математическое моделирование. Нефть, газ, энергетика. – 2018. – Т. 4, № 1
Располагается в коллекциях:Вестник ТюмГУ: Физико-математическое моделирование. Нефть, газ, энергетика

Файлы этого ресурса:
Файл Описание РазмерФормат 
008_022.pdf1.06 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.