Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://elib.utmn.ru/jspui/handle/ru-tsu/31678
Название: | Эллиптические уравнения и квазигиперболические отображения |
Другие названия: | Elliptic equations and quasi-hyperbolic maps |
Авторы: | Латфуллин, Т. Г. Латфуллин, Т. Г. |
Ключевые слова: | дифференциальные уравнения интегральные уравнения эллиптические уравнения квазигиперболические отображения уравнения второго порядка квазигиперболичность differential equations integral equations elliptic equations quasi-hyperbolic maps second-order equations quasi-hyperbolicity |
Дата публикации: | 1998 |
Издатель: | Издательство Тюменского государственного университета |
Библиографическое описание: | Латфуллин, Т. Г. Эллиптические уравнения и квазигиперболические отображения / Т. Г. Латфуллин. — Текст : электронный // Вестник Тюменского государственного университета. — 1998. — № 2. — С. 7–11. |
Аннотация (реферат): | Работа представляет собой модификацию результатов статьи О. Maртио и Ю. Вяйсяля для квазигиперболических отображений. Устанавливаются условия, позволяющие находить решение дифференциального уравнения второго порядка эллиптического типа в виде композиции отображения и решения другого уравнения. The work is a modification of the results of the article by O. Martio and Yu. A model for quasi-hyperbolic maps. Conditions are established that make it possible to find a solution to a second-order elliptic differential equation in the form of a composition of a mapping and a solution to another equation. |
URI (Унифицированный идентификатор ресурса): | https://elib.utmn.ru/jspui/handle/ru-tsu/31678 |
ISBN: | 5-88081-131-X |
Источник: | Вестник Тюменского государственного университета. — 1998. — № 2 |
Располагается в коллекциях: | Вестник ТюмГУ: Физико-математическое моделирование. Нефть, газ, энергетика |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
vestnikTyumGU_1998_2_7_11.pdf | 1.44 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.