Please use this identifier to cite or link to this item:
https://elib.utmn.ru/jspui/handle/ru-tsu/14526
Title: | Двумерная модель сжимаемой сплошной среды для описания волн жидкости |
Other Titles: | Two-dimensional model of solid media to describe fluid waves |
Authors: | Deryabin, S. L. Mezentsev, A. V. Дерябин, С. Л. Мезенцев, А. В. |
Keywords: | converging series weak discontinuity free surface initial-boundary value problems two-dimensional flows двумерные течения начально-краевые задачи сходящиеся ряды слабый разрыв свободная поверхность |
Issue Date: | 2014 |
Publisher: | Издательство Тюменского государственного университета |
Citation: | Дерябин, С. Л. Двумерная модель сжимаемой сплошной среды для описания волн жидкости / С. Л. Дерябин, А. В. Мезенцев // Вестник Тюменского государственного университета. Серия: Физико-математические науки. Информатика / главный редактор Г. Ф. Шафранов-Куцев. – Тюмень : Издательство Тюменского государственного университета, 2014. – № 7. – С. 74-82. |
Abstract: | To describe the propagation of long waves many models of equations of shallow water are used. It should be mentioned, that the models of shallow water cannot provide us with depth distributions of velocity and density of the fluid. This research describes the parameters of the wave model of two-dimensional gas dynamics for the polytropic gas with gas politropy rate equal to 7. Solutions for the two of the initial-boundary value problems describing the current of the fluid from the surface of the bottom to the surface of water are provided. The current has a weak discontinuity within itself and it is, therefore, a piecewise component. Boundary conditions are found: on the bottom surface, on the water surface and on the weak discontinuity. The boundary conditions can be used for numerical calculations. Для описания распространения длинных волн используются многие модели уравнений мелкой воды. Заметим, что модели мелкой воды не позволяют получить распределений скорости и плотности жидкости по глубине. В данной работе для описания параметров волны использовалась двумерная модель газовой динамики для политропного газа с показателем политропы газа, равным 7. Построены решения двух начально-краевых задач, которые описывают течение жидкости от поверхности дна до поверхности воды включительно. Построенное течение имеет внутри себя слабый разрыв и поэтому является кусочно-составным. Найдены граничные условия: на поверхности дна, поверхности воды и на слабом разрыве. Полученные граничные условия могут быть использованы при проведении численных расчетов. |
URI: | https://elib.utmn.ru/jspui/handle/ru-tsu/14526 |
ISSN: | 1562-2983 1994-8484 |
Source: | Вестник Тюменского государственного университета. Серия: Физико-математические науки. Информатика. – 2014. – № 7 |
Appears in Collections: | Вестник ТюмГУ: Физико-математическое моделирование. Нефть, газ, энергетика
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.