Please use this identifier to cite or link to this item: https://elib.utmn.ru/jspui/handle/ru-tsu/21358
Title: Google translate the deep-learning upgrade of Google translation methods
Other Titles: Глубокое обучение нейронной сети онлайн-переводчика
Authors: Миняйло, М. И.
Скороходова, Л. В.
Minyailo, M. I.
Skorokhodova, L. V.
Keywords: глубокое обучение
машинный перевод на базе нейронных сетей
искусственный интеллект
рекуррентные нейронные сети
квантовые вычисления
deep-learning technique
Neural Machine Translation
Artificial Intelligence
Google Translate
Recurrent Neural Network
quantized computation
Issue Date: 2017
Publisher: Кафедра иностранных языков и межкультурной профессиональной коммуникации естественнонаучных направлений Тюменского государственного университета
Citation: Миняйло, М. И. Google translate the deep-learning upgrade of Google translation methods = Глубокое обучение нейронной сети онлайн-переводчика / М. И. Миняйло, Л. В. Скороходова. — Текст : электронный // Language & Science / главный редактор О. Э. Сухарева ; научный редактор Е. А. Меньш ; Тюменский государственный университет. — 2017. — № 6.
Abstract: Существует распространенное мнение, что машинный перевод на базе нейронных сетей вычислительно затратная операция как в тренировке программы, так и в конечном результате перевода. Проблемой является также нарушение устойчивости работы устройства, особенно когда вводимые для перевода предложения содержат редко употребляемые слова, большие объемы информации и длинные речевые модели. Компания Google представила новую систему для машинного перевода, Google Neural Machine Translation (GNMT), т. е. машинный перевод на базе нейронных сетей. Она использует глубинные нейронные сети для перевода целых предложений, а не только фраз, что значительно улучшает качество перевода.
It seems to be a generally accepted belief that NMT systems are computationally expensive both in training and in translation inference. They also lack of robustness, particularly when input sentences contain rare words, very large data sets and large models. Google Neural Machine Translation (NMT) has great potential to overcome many of the weaknesses of conventional phrase-based translation systems. Google began experimenting with a deep-learning technique, called neural machine translation that can translate entire sentences without breaking them down into smaller components. That approach eventually reduced the number of Google Translate errors by at least 60 percent on many language pairs in comparison with the older, phrase-based approach.
URI: https://elib.utmn.ru/jspui/handle/ru-tsu/21358
Source: Language & Science. – 2017. – № 6
Appears in Collections:Language & Science

Files in This Item:
File Description SizeFormat 
Minyaylo_Skorokhodova_Glubok.obuch.pdf432.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.