Please use this identifier to cite or link to this item: https://elib.utmn.ru/jspui/handle/ru-tsu/14508
Title: Задача Стефана как предельный случай задачи о фазовом переходе в спектре температур
Other Titles: Stefan problem as the limiting case of the problem of phase transition in a temperature range
Authors: Аксенов, Борис Гаврилович
Svetlana, V. Karyakina
Boris, G. Aksenov
Карякина, Светлана Валентиновна
Keywords: Задача Стефана;промерзание-оттаивание влажного грунта;метод оценок;квазилинейная задача;freezethaw cycles of the moist soil;method of estimates;quasi-linear problem;Stefan problem
Issue Date: 2013
Citation: Аксенов, Б. Г. Задача Стефана как предельный случай задачи о фазовом переходе в спектре температур / Б. Г. Аксенов, С. В. Карякина // Вестник Тюменского государственного университета. - 2013. - № 7. - С. 133-140.
metadata.dc.relation.ispartof: Вестник ТюмГУ: Физико-математическое моделирование. Нефть, газ, энергетика. Физико-математические науки. Информатика (№7, 2013)
Abstract: В статье приводится теоретическое обоснование приложения метода оценок к решению задачи Стефана. Метод оценок предполагает построение дифференциальных и интегральных неравенств для уравнений параболического или эллиптического типа, описывающих процессы нестационарной или стационарной теплопроводности. Непосредственное построение таких неравенств для задачи Стефана невозможно в связи с тем, что на границе фазового перехода основное уравнение не определено. Здесь рассматривается задача Стефана не в классической постановке, а как предельный случай более общей квазилинейной задачи о фазовом переходе в спектре температур. Показано, что при определенных условиях существует точное равенство между решением квазилинейной задачи и некоторой фронтовой задачи. Это позволяет использовать неравенства, построенные для непрерывной квазилинейной задачи, для оценки решения задачи Стефана. Сформулированы принципы, соблюдение которых обеспечивает возможность построения приближенных решений задачи Стефана с различными граничными условиями. Изложение ведется на примере задачи о промерзании-оттаивании влажного грунта. В грубодисперсных грунтах поровая влага замерзает (оттаивает) при фиксированной температуре. Такой процесс естественно описывать фронтовой задачей Стефана. В тонкодисперсных грунтах поровая влага находится в связанном состоянии, поэтому фронт фазового перехода не образуется, а Джоулево тепло выделяется (поглощается) в некотором спектре температур. Для каждого типа тонкодисперсного грунта фазовый состав влаги при отрицательных емпературах описывается так называемой кривой незамерзшей влаги. Таким образом, для процесса промерзания–оттаивания грунта обе сопоставляемые задачи (квазилинейная и фронтовая) имеют конкретный физический . The article offers a theory which enables to apply the method of estimates to the solution of Stefan problem. The method of estimates suggests differential and integral inequalities for the equations of parabolic or elliptic type describing processes of non-stationary or stationary heat conductivity. does not allow Such inequalities are inapplicable for the Stefan problem because at phase transition boundary the main equation is not defined. Here the Stefan problem is not treated in its classical statement, but as a limiting case of a more general quasi-linear problem of phase transition in a temperature range. It is shown that under certain conditions there exists an exact equality between the solution of a quasi-linear problem and some front problem. This allows using the inequalities for a continuous quasi-linear problem, to estimate the solution of the Stefan problem. The authors formulate the principles which allow to generate approximate solutions of the Stefan problem for various boundary conditions. The theory is applied to the problem based on freeze-thaw cycles of the moist soil. In coarse-dispersed soils the pore moisture freezes (thaws) at a fixed temperature. This process is typically described with the Stefan front problem. In finely dispersed soils the pore moisture is in the bound state, and therefore, the front of phase transition is not formed, while Joulean heat is released (absorbed) in some temperature range. For each type of finely dispersed soil the phase composition of moisture at negative temperatures is described by the so-called curve of the not-frozen moisture. Thus, both compared problems (quasi-linear and front) are immediately applicable to describe the freeze-thaw cycles of the moist soil.
URI: https://elib.utmn.ru/jspui/handle/ru-tsu/14508
Appears in Collections:Вестник ТюмГУ: Физико-математическое моделирование. Нефть, газ, энергетика

Files in This Item:
File SizeFormat 
3_С.П. Баутин, И.Ю. Крутова.pdf1,15 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.