Please use this identifier to cite or link to this item: https://elib.utmn.ru/jspui/handle/ru-tsu/3296
Title: Решение задач тепло- и массопереноса с нелинейными коэффициентами
Other Titles: Solution of heat and mass transfer problems with non-linear coefficients
Authors: Аксенов, Б. Г.
Карякин, Ю. Е.
Карякина,С. В.
Aksenov, B. G.
Karyakin, Yu. E.
Karyakina, S. V.
Keywords: задачи тепло- и массообмена; нелинейные немонотонные коэффициенты; теоремы сравнения Вестфаля; сужающиеся оценки; приближенное аналитическое решение; гарантированная точность; heat and mass transfer problems; nonlinear nonmonotonic coefficients; Westphal comparison theorems; narrowing estimates; approximate analytical solution; guaranteed accuracy
Issue Date: 2019
Publisher: Тюменский государственный университет
Citation: Аксенов, Б. Г. Решение задач тепло- и массопереноса с нелинейными коэффициентами / БГ. Аксенов, Ю. Е. Карякин, С. В. Карякина // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика / главный редактор А. Б. Шабаров. – Тюмень : Изд-во Тюм. гос. ун-та, 2019. – Т. 5, № 4(20). – С. 10-20.
Series/Report no.: Физико-математическое моделирование. Нефть, газ, энергетика
Abstract: Характерной особенностью уравнений, описывающих процессы тепло- и массопереноса, является наличие нелинейной немонотонной зависимости одного из коэффициентов от неизвестной функции. Существующие приближенные методы, как правило, не позволяют получить приемлемых решений. Исключение составляют численные методы, которые не предполагают получения аналитического выражения решения и требуют исследования сходимости использованного алгоритма. В работе предлагается приближенный метод решения, основанный на применении теорем сравнения. Метод заключается в построении верхней и нижней оценок точного решения. Строится процедура последовательного улучшения этих оценок, позволяющая получать решения с заданной точностью. Приводится решение задачи, имеющей точное аналитическое решение. Показана работоспособность предлагаемой методики получения оценок сверху и снизу нелинейных задач с немонотонной зависимостью коэффициентов от неизвестной функции. Показано, что предложенный способ получения оценок решения нелинейного уравнения параболического типа можно рассматривать как способ приближенного аналитического решения с гарантированной точностью. Кроме того, метод позволяет вычислить максимальное отклонение от точного решения результатов применения других приближенных методов.
Equations, which have nonlinear nonmonotonic dependence of one of the coefficients on an unknown function, can describe processes of heat and mass transfer. As a rule, existing approximate methods do not provide solutions with acceptable accuracy. Numerical methods do not involve obtaining an analytical expression for the unknown function and require studying the convergence of the algorithm used. The value of absolute error is uncertain. The authors propose an approximate method for solving such problems based on Westphal comparison theorems. The comparison theorems allow finding upper and lower bounds of the unknown exact solution. A special procedure developed for the stepwise improvement of these bounds provide solutions with a given accuracy There are only a few problems for equations with nonlinear nonmonotonic coefficients for which the exact solution has been obtained. One of such problems, presented in this article, shows the efficiency of the proposed method. The results prove that the proposed method for obtaining bounds of the solution of a nonlinear nonmonotonic equation of parabolic type can be considered as a new method of the approximate analytical solution having guaranteed accuracy. In addition, the proposed here method allows calculating the maximum deviation from the unknown exact solution of the results of other approximate and numerical methods.
URI: https://elib.utmn.ru/jspui/handle/ru-tsu/3296
ISSN: 2411-7978
2500-3526
Appears in Collections:Вестник ТюмГУ: Физико-математическое моделирование. Нефть, газ, энергетика

Files in This Item:
File SizeFormat 
010_020.pdf0 BAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.